维基百科上的余弦相似度文章
你能在这里(以列表或其他形式)显示向量吗? 然后算一算,看看是怎么回事?
维基百科上的余弦相似度文章
你能在这里(以列表或其他形式)显示向量吗? 然后算一算,看看是怎么回事?
当前回答
简单的JAVA代码计算余弦相似度
/**
* Method to calculate cosine similarity of vectors
* 1 - exactly similar (angle between them is 0)
* 0 - orthogonal vectors (angle between them is 90)
* @param vector1 - vector in the form [a1, a2, a3, ..... an]
* @param vector2 - vector in the form [b1, b2, b3, ..... bn]
* @return - the cosine similarity of vectors (ranges from 0 to 1)
*/
private double cosineSimilarity(List<Double> vector1, List<Double> vector2) {
double dotProduct = 0.0;
double normA = 0.0;
double normB = 0.0;
for (int i = 0; i < vector1.size(); i++) {
dotProduct += vector1.get(i) * vector2.get(i);
normA += Math.pow(vector1.get(i), 2);
normB += Math.pow(vector2.get(i), 2);
}
return dotProduct / (Math.sqrt(normA) * Math.sqrt(normB));
}
其他回答
简单的JAVA代码计算余弦相似度
/**
* Method to calculate cosine similarity of vectors
* 1 - exactly similar (angle between them is 0)
* 0 - orthogonal vectors (angle between them is 90)
* @param vector1 - vector in the form [a1, a2, a3, ..... an]
* @param vector2 - vector in the form [b1, b2, b3, ..... bn]
* @return - the cosine similarity of vectors (ranges from 0 to 1)
*/
private double cosineSimilarity(List<Double> vector1, List<Double> vector2) {
double dotProduct = 0.0;
double normA = 0.0;
double normB = 0.0;
for (int i = 0; i < vector1.size(); i++) {
dotProduct += vector1.get(i) * vector2.get(i);
normA += Math.pow(vector1.get(i), 2);
normB += Math.pow(vector2.get(i), 2);
}
return dotProduct / (Math.sqrt(normA) * Math.sqrt(normB));
}
这是一个简单的Python代码,实现余弦相似度。
from scipy import linalg, mat, dot
import numpy as np
In [12]: matrix = mat( [[2, 1, 0, 2, 0, 1, 1, 1],[2, 1, 1, 1, 1, 0, 1, 1]] )
In [13]: matrix
Out[13]:
matrix([[2, 1, 0, 2, 0, 1, 1, 1],
[2, 1, 1, 1, 1, 0, 1, 1]])
In [14]: dot(matrix[0],matrix[1].T)/np.linalg.norm(matrix[0])/np.linalg.norm(matrix[1])
Out[14]: matrix([[ 0.82158384]])
为了简单起见,我化简了向量a和b:
Let :
a : [1, 1, 0]
b : [1, 0, 1]
那么余弦相似度(Theta)
(Theta) = (1*1 + 1*0 + 0*1)/sqrt((1^2 + 1^2))* sqrt((1^2 + 1^2)) = 1/2 = 0.5
cos0.5的逆是60度。
这是我在c#中的实现。
using System;
namespace CosineSimilarity
{
class Program
{
static void Main()
{
int[] vecA = {1, 2, 3, 4, 5};
int[] vecB = {6, 7, 7, 9, 10};
var cosSimilarity = CalculateCosineSimilarity(vecA, vecB);
Console.WriteLine(cosSimilarity);
Console.Read();
}
private static double CalculateCosineSimilarity(int[] vecA, int[] vecB)
{
var dotProduct = DotProduct(vecA, vecB);
var magnitudeOfA = Magnitude(vecA);
var magnitudeOfB = Magnitude(vecB);
return dotProduct/(magnitudeOfA*magnitudeOfB);
}
private static double DotProduct(int[] vecA, int[] vecB)
{
// I'm not validating inputs here for simplicity.
double dotProduct = 0;
for (var i = 0; i < vecA.Length; i++)
{
dotProduct += (vecA[i] * vecB[i]);
}
return dotProduct;
}
// Magnitude of the vector is the square root of the dot product of the vector with itself.
private static double Magnitude(int[] vector)
{
return Math.Sqrt(DotProduct(vector, vector));
}
}
}
这段Python代码是我实现算法的快速而肮脏的尝试:
import math
from collections import Counter
def build_vector(iterable1, iterable2):
counter1 = Counter(iterable1)
counter2 = Counter(iterable2)
all_items = set(counter1.keys()).union(set(counter2.keys()))
vector1 = [counter1[k] for k in all_items]
vector2 = [counter2[k] for k in all_items]
return vector1, vector2
def cosim(v1, v2):
dot_product = sum(n1 * n2 for n1, n2 in zip(v1, v2) )
magnitude1 = math.sqrt(sum(n ** 2 for n in v1))
magnitude2 = math.sqrt(sum(n ** 2 for n in v2))
return dot_product / (magnitude1 * magnitude2)
l1 = "Julie loves me more than Linda loves me".split()
l2 = "Jane likes me more than Julie loves me or".split()
v1, v2 = build_vector(l1, l2)
print(cosim(v1, v2))