我的背景——在Hadoop世界工作了4周。使用Cloudera的Hadoop VM对Hive, Pig和Hadoop进行了一些尝试。已阅读谷歌关于Map-Reduce和GFS的论文(PDF链接)。

我明白——

猪的语言猪的拉丁语是一种转变 来自(适合程序员的思维方式) SQL喜欢声明式的 编程和Hive的查询语言密切相关 类似于SQL。 Pig位于Hadoop之上 原则也可以凌驾于之上 德律阿得斯。我可能错了,但蜂巢错了 与Hadoop紧密耦合。 都是Pig Latin和Hive命令 编译映射和减少作业。

我的问题是——当一个(比如猪)可以达到目的时,拥有两者的目标是什么?难道只是因为雅虎宣传了Pig !和Facebook的Hive ?


当前回答

您可以通过pig/hive查询实现类似的结果。主要的区别在于理解/编写/创建查询的方法。

Pig倾向于创建数据流:在每个步骤中进行一些处理的小步骤 Hive提供了类似SQL的语言来操作数据,因此从RDBMS转换更容易(Pig对于没有SQL经验的人来说更容易)

同样值得注意的是,对于Hive来说,你可以很好的界面来处理这些数据(Beeswax for HUE,或Hive web界面),它还为你提供了关于你的数据的信息(模式等)的亚metastore,这是关于你的数据的一个有用的中心信息。

我同时使用Hive和Pig,用于不同的查询(我使用它可以更快/更容易地编写查询,我这样做主要是临时查询)-它们可以使用相同的数据作为输入。但目前我的大部分工作都是通过Beeswax完成的。

其他回答

Pig-latin is data flow style, is more suitable for software engineer. While sql is more suitable for analytics person who are get used to sql. For complex task, for hive you have to manually to create temporary table to store intermediate data, but it is not necessary for pig. Pig-latin is suitable for complicated data structure( like small graph). There's a data structure in pig called DataBag which is a collection of Tuple. Sometimes you need to calculate metrics which involve multiple tuples ( there's a hidden link between tuples, in this case I would call it graph). In this case, it is very easy to write a UDF to calculate the metrics which involve multiple tuples. Of course it could be done in hive, but it is not so convenient as it is in pig. Writing UDF in pig much is easier than in Hive in my opinion. Pig has no metadata support, (or it is optional, in future it may integrate hcatalog). Hive has tables' metadata stored in database. You can debug pig script in local environment, but it would be hard for hive to do that. The reason is point 3. You need to set up hive metadata in your local environment, very time consuming.

在这个链接中阅读PIG和HIVE的区别。

http://www.aptibook.com/Articles/Pig-and-hive-advantages-disadvantages-features

给出了所有的方面。如果你不知道该选择哪个,那么你必须看看那个网页。

我相信你的问题的真正答案是,它们是/是独立的项目,没有集中协调的目标。他们在早期处于不同的空间,随着两个项目的扩展,随着时间的推移逐渐重叠。

摘自Hadoop O'Reilly的书:

Pig:一种数据流语言 探索环境非常大 数据集。 Hive:分布式数据仓库

您可以通过pig/hive查询实现类似的结果。主要的区别在于理解/编写/创建查询的方法。

Pig倾向于创建数据流:在每个步骤中进行一些处理的小步骤 Hive提供了类似SQL的语言来操作数据,因此从RDBMS转换更容易(Pig对于没有SQL经验的人来说更容易)

同样值得注意的是,对于Hive来说,你可以很好的界面来处理这些数据(Beeswax for HUE,或Hive web界面),它还为你提供了关于你的数据的信息(模式等)的亚metastore,这是关于你的数据的一个有用的中心信息。

我同时使用Hive和Pig,用于不同的查询(我使用它可以更快/更容易地编写查询,我这样做主要是临时查询)-它们可以使用相同的数据作为输入。但目前我的大部分工作都是通过Beeswax完成的。

一般来说,Pig对于ETL类型的工作负载很有用。例如,您每天需要对数据进行的一组转换。

当你需要运行特别的查询或只是想要探索数据时,Hive就会发挥作用。它有时可以作为可视化层(Tableau/Qlikview)的接口。

两者都是必不可少的,但目的不同。