我从panda DataFrame文档开始:数据结构简介
我希望在时间序列类型的计算中用值迭代地填充DataFrame。所以基本上,我想用列A、B和时间戳行初始化DataFrame,全部为0或全部为NaN。
然后,我将添加初始值,并遍历该数据,从前面的行计算新行,例如,行[A][t]=行[A][t-1]+1左右。
我目前使用的代码如下所示,但我觉得这有点难看,必须有一种直接使用DataFrame的方法,或者只是一种更好的方法。
注意:我使用的是Python 2.7。
import datetime as dt
import pandas as pd
import scipy as s
if __name__ == '__main__':
base = dt.datetime.today().date()
dates = [ base - dt.timedelta(days=x) for x in range(0,10) ]
dates.sort()
valdict = {}
symbols = ['A','B', 'C']
for symb in symbols:
valdict[symb] = pd.Series( s.zeros( len(dates)), dates )
for thedate in dates:
if thedate > dates[0]:
for symb in valdict:
valdict[symb][thedate] = 1+valdict[symb][thedate - dt.timedelta(days=1)]
print valdict
用列名初始化空框架
import pandas as pd
col_names = ['A', 'B', 'C']
my_df = pd.DataFrame(columns = col_names)
my_df
将新记录添加到框架
my_df.loc[len(my_df)] = [2, 4, 5]
您还可能需要传递字典:
my_dic = {'A':2, 'B':4, 'C':5}
my_df.loc[len(my_df)] = my_dic
将另一帧附加到现有帧
col_names = ['A', 'B', 'C']
my_df2 = pd.DataFrame(columns = col_names)
my_df = my_df.append(my_df2)
性能注意事项
如果要在循环中添加行,请考虑性能问题。对于大约前1000条记录,“my_df.loc”的性能更好,但随着循环中记录数量的增加,性能逐渐变慢。
如果你计划在一个大循环(比如10M 记录等),你最好混合使用这两种;用iloc填充数据帧,直到其大小达到1000左右,然后将其附加到原始数据帧,并清空临时数据帧。这将使你的表现提高约10倍。
这是我用循环从几个列表中创建动态数据帧的方法
x = [1,2,3,4,5,6,7,8]
y = [22,12,34,22,65,24,12,11]
z = ['as','ss','wa', 'ss','er','fd','ga','mf']
names = ['Bob', 'Liz', 'chop']
一个循环
def dataF(x,y,z,names):
res = []
for t in zip(x,y,z):
res.append(t)
return pd.DataFrame(res,columns=names)
后果
dataF(x,y,z,names)
假设一个数据帧有19行
index=range(0,19)
index
columns=['A']
test = pd.DataFrame(index=index, columns=columns)
保持A列为常量
test['A']=10
将b列保持为循环给定的变量
for x in range(0,19):
test.loc[[x], 'b'] = pd.Series([x], index = [x])
可以用任何值替换pd.Series中的第一个x([x],index=[x])