我有一个有两列的数据帧。第一列包含类别,如“第一”,“第二”,“第三”,第二列有数字,表示我从“类别”中看到特定组的次数。

例如:

Category     Frequency
First        10
First        15
First        5
Second       2
Third        14
Third        20
Second       3

我想按类别对数据进行排序,并将所有频率相加:

Category     Frequency
First        30
Second       5
Third        34

在R中怎么做呢?


当前回答

使用聚合:

aggregate(x$Frequency, by=list(Category=x$Category), FUN=sum)
  Category  x
1    First 30
2   Second  5
3    Third 34

在上面的例子中,可以在列表中指定多个维度。相同数据类型的多个聚合指标可以通过cbind合并:

aggregate(cbind(x$Frequency, x$Metric2, x$Metric3) ...

(嵌入@thelatemail评论),聚合也有一个公式界面

aggregate(Frequency ~ Category, x, sum)

或者,如果希望聚合多个列,可以使用。符号(也适用于一列)

aggregate(. ~ Category, x, sum)

或tapply:

tapply(x$Frequency, x$Category, FUN=sum)
 First Second  Third 
    30      5     34 

使用这些数据:

x <- data.frame(Category=factor(c("First", "First", "First", "Second",
                                      "Third", "Third", "Second")), 
                    Frequency=c(10,15,5,2,14,20,3))

其他回答

library(tidyverse)

x <- data.frame(Category= c('First', 'First', 'First', 'Second', 'Third', 'Third', 'Second'), 
           Frequency = c(10, 15, 5, 2, 14, 20, 3))

count(x, Category, wt = Frequency)

你也可以使用by()函数:

x2 <- by(x$Frequency, x$Category, sum)
do.call(rbind,as.list(x2))

其他那些包(plyr,重塑)的好处是返回data.frame,但是by()值得熟悉一下,因为它是一个基函数。

你也可以使用dplyr包来实现这个目的:

library(dplyr)
x %>% 
  group_by(Category) %>% 
  summarise(Frequency = sum(Frequency))

#Source: local data frame [3 x 2]
#
#  Category Frequency
#1    First        30
#2   Second         5
#3    Third        34

或者,对于多个摘要列(也适用于一个列):

x %>% 
  group_by(Category) %>% 
  summarise(across(everything(), sum))

下面是一些关于如何使用dplyr函数(使用内置数据集mtcars)按组总结数据的例子:

# several summary columns with arbitrary names
mtcars %>% 
  group_by(cyl, gear) %>%                            # multiple group columns
  summarise(max_hp = max(hp), mean_mpg = mean(mpg))  # multiple summary columns

# summarise all columns except grouping columns using "sum" 
mtcars %>% 
  group_by(cyl) %>% 
  summarise(across(everything(), sum))

# summarise all columns except grouping columns using "sum" and "mean"
mtcars %>% 
  group_by(cyl) %>% 
  summarise(across(everything(), list(mean = mean, sum = sum)))

# multiple grouping columns
mtcars %>% 
  group_by(cyl, gear) %>% 
  summarise(across(everything(), list(mean = mean, sum = sum)))

# summarise specific variables, not all
mtcars %>% 
  group_by(cyl, gear) %>% 
  summarise(across(c(qsec, mpg, wt), list(mean = mean, sum = sum)))

# summarise specific variables (numeric columns except grouping columns)
mtcars %>% 
  group_by(gear) %>% 
  summarise(across(where(is.numeric), list(mean = mean, sum = sum)))

有关更多信息,包括%>%操作符,请参阅dplyr介绍。

使用cast代替reccast(注意'Frequency'现在是'value')

df  <- data.frame(Category = c("First","First","First","Second","Third","Third","Second")
                  , value = c(10,15,5,2,14,20,3))

install.packages("reshape")

result<-cast(df, Category ~ . ,fun.aggregate=sum)

得到:

Category (all)
First     30
Second    5
Third     34

几年后,只是为了添加另一个简单的基本R解决方案,由于某种原因这里没有给出——xtabs

xtabs(Frequency ~ Category, df)
# Category
# First Second  Third 
#    30      5     34 

或者你想要回数据帧

as.data.frame(xtabs(Frequency ~ Category, df))
#   Category Freq
# 1    First   30
# 2   Second    5
# 3    Third   34