我有一个有两列的数据帧。第一列包含类别,如“第一”,“第二”,“第三”,第二列有数字,表示我从“类别”中看到特定组的次数。

例如:

Category     Frequency
First        10
First        15
First        5
Second       2
Third        14
Third        20
Second       3

我想按类别对数据进行排序,并将所有频率相加:

Category     Frequency
First        30
Second       5
Third        34

在R中怎么做呢?


当前回答

使用聚合:

aggregate(x$Frequency, by=list(Category=x$Category), FUN=sum)
  Category  x
1    First 30
2   Second  5
3    Third 34

在上面的例子中,可以在列表中指定多个维度。相同数据类型的多个聚合指标可以通过cbind合并:

aggregate(cbind(x$Frequency, x$Metric2, x$Metric3) ...

(嵌入@thelatemail评论),聚合也有一个公式界面

aggregate(Frequency ~ Category, x, sum)

或者,如果希望聚合多个列,可以使用。符号(也适用于一列)

aggregate(. ~ Category, x, sum)

或tapply:

tapply(x$Frequency, x$Category, FUN=sum)
 First Second  Third 
    30      5     34 

使用这些数据:

x <- data.frame(Category=factor(c("First", "First", "First", "Second",
                                      "Third", "Third", "Second")), 
                    Frequency=c(10,15,5,2,14,20,3))

其他回答

rcs提供的答案很有效,也很简单。然而,如果你正在处理更大的数据集,需要性能提升,有一个更快的替代方案:

library(data.table)
data = data.table(Category=c("First","First","First","Second","Third", "Third", "Second"), 
                  Frequency=c(10,15,5,2,14,20,3))
data[, sum(Frequency), by = Category]
#    Category V1
# 1:    First 30
# 2:   Second  5
# 3:    Third 34
system.time(data[, sum(Frequency), by = Category] )
# user    system   elapsed 
# 0.008     0.001     0.009 

让我们用data.frame和上面的比较一下:

data = data.frame(Category=c("First","First","First","Second","Third", "Third", "Second"),
                  Frequency=c(10,15,5,2,14,20,3))
system.time(aggregate(data$Frequency, by=list(Category=data$Category), FUN=sum))
# user    system   elapsed 
# 0.008     0.000     0.015 

如果你想保留列,这是语法:

data[,list(Frequency=sum(Frequency)),by=Category]
#    Category Frequency
# 1:    First        30
# 2:   Second         5
# 3:    Third        34

数据集越大,这种差异就越明显,如下图所示:

data = data.table(Category=rep(c("First", "Second", "Third"), 100000),
                  Frequency=rnorm(100000))
system.time( data[,sum(Frequency),by=Category] )
# user    system   elapsed 
# 0.055     0.004     0.059 
data = data.frame(Category=rep(c("First", "Second", "Third"), 100000), 
                  Frequency=rnorm(100000))
system.time( aggregate(data$Frequency, by=list(Category=data$Category), FUN=sum) )
# user    system   elapsed 
# 0.287     0.010     0.296 

对于多个聚合,可以按如下方式组合lapply和.SD

data[, lapply(.SD, sum), by = Category]
#    Category Frequency
# 1:    First        30
# 2:   Second         5
# 3:    Third        34

可以使用rowsum函数来计算频率。

data("mtcars")
df <- mtcars
df$cyl <- as.factor(df$cyl)

头部看起来如下:

               wt    mpg    cyl
              <dbl> <dbl>   <fct>
Mazda RX4     2.620  21.0   6
Mazda RX4 Wag 2.875  21.0   6
Datsun 710    2.320  22.8   4

然后,

rowsum(df$mpg, df$cyl) #values , group

4   293.3
6   138.2
8   211.4

如果x是一个包含你的数据的数据框架,那么下面的代码将完成你想要的:

require(reshape)
recast(x, Category ~ ., fun.aggregate=sum)
library(plyr)
ddply(tbl, .(Category), summarise, sum = sum(Frequency))

虽然我最近对大多数这些类型的操作都转换为dplyr,但sqldf包对于某些事情仍然非常好(恕我直言,可读性更强)。

下面是一个示例,说明如何使用sqldf回答这个问题

x <- data.frame(Category=factor(c("First", "First", "First", "Second",
                                  "Third", "Third", "Second")), 
                Frequency=c(10,15,5,2,14,20,3))

sqldf("select 
          Category
          ,sum(Frequency) as Frequency 
       from x 
       group by 
          Category")

##   Category Frequency
## 1    First        30
## 2   Second         5
## 3    Third        34