import copy

a = "deepak"
b = 1, 2, 3, 4
c = [1, 2, 3, 4]
d = {1: 10, 2: 20, 3: 30}

a1 = copy.copy(a)
b1 = copy.copy(b)
c1 = copy.copy(c)
d1 = copy.copy(d)


print("immutable - id(a)==id(a1)", id(a) == id(a1))
print("immutable - id(b)==id(b1)", id(b) == id(b1))
print("mutable - id(c)==id(c1)", id(c) == id(c1))
print("mutable - id(d)==id(d1)", id(d) == id(d1))

我得到了以下结果:

immutable - id(a)==id(a1) True
immutable - id(b)==id(b1) True
mutable - id(c)==id(c1) False
mutable - id(d)==id(d1) False

如果执行deepcopy:

a1 = copy.deepcopy(a)
b1 = copy.deepcopy(b)
c1 = copy.deepcopy(c)
d1 = copy.deepcopy(d)

结果是一样的:

immutable - id(a)==id(a1) True
immutable - id(b)==id(b1) True
mutable - id(c)==id(c1) False
mutable - id(d)==id(d1) False

如果我做赋值操作:

a1 = a
b1 = b
c1 = c
d1 = d

结果如下:

immutable - id(a)==id(a1) True
immutable - id(b)==id(b1) True
mutable - id(c)==id(c1) True
mutable - id(d)==id(d1) True

谁能解释一下这些副本之间的区别是什么?它与可变和不可变对象有关吗?如果有,你能解释一下吗?


当前回答

深度复制与嵌套结构有关。如果你有列表的列表,那么deepcopy也复制嵌套的列表,所以它是递归复制。通过复制,您有一个新的外部列表,但内部列表是引用。赋值不复制。 为前

import copy
spam = [[0, 1, 2, 3], 4, 5]
cheese = copy.copy(spam)
cheese.append(3)
cheese[0].append(3)
print(spam)
print(cheese)

输出

[[0,1,2,3,3], 4,5] [[0,1,2,3,3], 4,5,3] 复制方法将外部列表的内容复制到新列表,但两个列表的内部列表仍然相同,因此如果你在任何列表的内部列表中做出更改,它将影响两个列表。

但是如果你使用深度复制,它也会为内部列表创建新的实例。

import copy
spam = [[0, 1, 2, 3], 4, 5]
cheese = copy.deepcopy(spam)
cheese.append(3)
cheese[0].append(3)
print(spam)
print(cheese)

输出

[0, 1, 2, 3] [[0, 1, 2, 3, 3], 4, 5, 3]

其他回答

下面的代码演示了赋值、使用复制方法的浅复制、使用(slice)[:]的浅复制和深度复制之间的区别。下面的示例使用嵌套列表,使差异更加明显。

from copy import deepcopy

########"List assignment (does not create a copy) ############
l1 = [1,2,3, [4,5,6], [7,8,9]]
l1_assigned = l1

print(l1)
print(l1_assigned)

print(id(l1), id(l1_assigned))
print(id(l1[3]), id(l1_assigned[3]))
print(id(l1[3][0]), id(l1_assigned[3][0]))

l1[3][0] = 100
l1.pop(4)
l1.remove(1)


print(l1)
print(l1_assigned)
print("###################################")

########"List copy using copy method (shallow copy)############

l2 = [1,2,3, [4,5,6], [7,8,9]]
l2_copy = l2.copy()

print(l2)
print(l2_copy)

print(id(l2), id(l2_copy))
print(id(l2[3]), id(l2_copy[3]))
print(id(l2[3][0]), id(l2_copy[3][0]))
l2[3][0] = 100
l2.pop(4)
l2.remove(1)


print(l2)
print(l2_copy)

print("###################################")

########"List copy using slice (shallow copy)############

l3 = [1,2,3, [4,5,6], [7,8,9]]
l3_slice = l3[:]

print(l3)
print(l3_slice)

print(id(l3), id(l3_slice))
print(id(l3[3]), id(l3_slice[3]))
print(id(l3[3][0]), id(l3_slice[3][0]))

l3[3][0] = 100
l3.pop(4)
l3.remove(1)


print(l3)
print(l3_slice)

print("###################################")

########"List copy using deepcopy ############

l4 = [1,2,3, [4,5,6], [7,8,9]]
l4_deep = deepcopy(l4)

print(l4)
print(l4_deep)

print(id(l4), id(l4_deep))
print(id(l4[3]), id(l4_deep[3]))
print(id(l4[3][0]), id(l4_deep[3][0]))

l4[3][0] = 100
l4.pop(4)
l4.remove(1)

print(l4)
print(l4_deep)
print("##########################")
print(l4[2], id(l4[2]))
print(l4_deep[3], id(l4_deep[3]))

print(l4[2][0], id(l4[2][0]))
print(l4_deep[3][0], id(l4_deep[3][0]))

在python中,当我们将list、tuples、dict等对象赋值给另一个对象时,通常使用' = '符号,python通过引用创建copy ' s。也就是说,我们有一个这样的列表:

list1 = [ [ 'a' , 'b' , 'c' ] , [ 'd' , 'e' , 'f' ]  ]

然后我们给这个列表分配另一个列表,像这样:

list2 = list1

然后,如果我们在python终端中输出list2,我们将得到:

list2 = [ [ 'a', 'b', 'c'] , [ 'd', 'e', ' f ']  ]

list1和list2都指向相同的内存位置,对其中任何一个的任何改变都会导致在两个对象中可见的变化,即两个对象都指向相同的内存位置。 如果我们像这样改变list1:

list1[0][0] = 'x’
list1.append( [ 'g'] )

那么list1和list2都将是:

list1 = [ [ 'x', 'b', 'c'] , [ 'd', 'e', ' f '] , [ 'g'] ]
list2 = [ [ 'x', 'b', 'c'] , [ 'd', 'e', ' f '] , [ 'g’ ] ]

现在来看浅复制,当两个对象通过浅复制进行复制时,两个父对象的子对象引用相同的内存位置,但任何被复制对象的任何进一步的新更改都将彼此独立。 让我们通过一个小例子来理解这一点。假设我们有这样一小段代码:

import copy

list1 = [ [ 'a', 'b', 'c'] , [ 'd', 'e', ' f ']  ]      # assigning a list
list2 = copy.copy(list1)       # shallow copy is done using copy function of copy module

list1.append ( [ 'g', 'h', 'i'] )   # appending another list to list1

print list1
list1 = [ [ 'a', 'b', 'c'] , [ 'd', 'e', ' f '] , [ 'g', 'h', 'i'] ]
list2 = [ [ 'a', 'b', 'c'] , [ 'd', 'e', ' f '] ]

注意,list2不受影响,但如果我们对子对象进行如下更改:

list1[0][0] = 'x’

那么list1和list2都将得到变化:

list1 = [ [ 'x', 'b', 'c'] , [ 'd', 'e', ' f '] , [ 'g', 'h', 'i'] ] 
list2 = [ [ 'x', 'b', 'c'] , [ 'd', 'e', ' f '] ]

现在,深度复制有助于创建彼此完全隔离的对象。如果两个对象通过深度复制进行复制,那么父对象和子对象都将指向不同的内存位置。 例子:

import copy

list1 = [ [ 'a', 'b', 'c'] , [ 'd', 'e', ' f ']  ]         # assigning a list
list2 = deepcopy.copy(list1)       # deep copy is done using deepcopy function of copy module

list1.append ( [ 'g', 'h', 'i'] )   # appending another list to list1

print list1
list1 = [ [ 'a', 'b', 'c'] , [ 'd', 'e', ' f '] , [ 'g', 'h', 'i'] ]
list2 = [ [ 'a', 'b', 'c'] , [ 'd', 'e', ' f '] ]

注意,list2不受影响,但如果我们对子对象进行如下更改:

list1[0][0] = 'x’

list2也不会受到影响,因为所有子对象和父对象都指向不同的内存位置:

list1 = [ [ 'x', 'b', 'c'] , [ 'd', 'e', ' f '] , [ 'g', 'h', 'i'] ] 
list2 = [ [ 'a', 'b', 'c'] , [ 'd', 'e', ' f  ' ] ]

希望能有所帮助。

>>lst=[1,2,3,4,5]

>>a=lst

>>b=lst[:]

>>> b
[1, 2, 3, 4, 5]

>>> a
[1, 2, 3, 4, 5]

>>> lst is b
False

>>> lst is a
True

>>> id(lst)
46263192

>>> id(a)
46263192 ------>  See here id of a and id of lst is same so its called deep copy and even boolean answer is true

>>> id(b)
46263512 ------>  See here id of b and id of lst is not same so its called shallow copy and even boolean answer is false although output looks same.

不确定上面是否提到过,但理解.copy()创建对原始对象的引用是非常重要的。如果你改变了复制的对象-你改变了原始对象。 .deepcopy()创建新对象并真正复制原始对象到新对象。改变新的深度复制对象不会影响原始对象。

是的,.deepcopy()递归复制原始对象,而.copy()创建一个引用对象到原始对象的一级数据。

因此.copy()和.deepcopy()之间的复制/引用差异是显著的。

对于不可变对象,创建一个副本没有多大意义,因为它们不会改变。对于可变对象赋值,copy和deepcopy的行为不同。让我们用例子来讨论每一个。

赋值操作只是将源的引用赋值给目标,例如:

>>> i = [1,2,3]
>>> j=i
>>> hex(id(i)), hex(id(j))
>>> ('0x10296f908', '0x10296f908') #Both addresses are identical

现在i和j技术上指向同一个列表。i和j都有相同的内存地址。任何更新 其中一个会被另一个反射。例句:

>>> i.append(4)
>>> j
>>> [1,2,3,4] #Destination is updated

>>> j.append(5)
>>> i
>>> [1,2,3,4,5] #Source is updated

另一方面,copy和deepcopy会创建一个新的变量副本。所以现在对原始变量的更改将不会被反映 复制变量,反之亦然。但是复制(浅复制),不创建嵌套对象的副本,而只是 复制嵌套对象的引用。Deepcopy递归复制所有嵌套对象。

一些演示copy和deepcopy行为的例子:

使用copy的平面列表示例:

>>> import copy
>>> i = [1,2,3]
>>> j = copy.copy(i)
>>> hex(id(i)), hex(id(j))
>>> ('0x102b9b7c8', '0x102971cc8') #Both addresses are different

>>> i.append(4)
>>> j
>>> [1,2,3] #Updation of original list didn't affected copied variable

使用copy的嵌套列表示例:

>>> import copy
>>> i = [1,2,3,[4,5]]
>>> j = copy.copy(i)

>>> hex(id(i)), hex(id(j))
>>> ('0x102b9b7c8', '0x102971cc8') #Both addresses are still different

>>> hex(id(i[3])), hex(id(j[3]))
>>> ('0x10296f908', '0x10296f908') #Nested lists have same address

>>> i[3].append(6)
>>> j
>>> [1,2,3,[4,5,6]] #Updation of original nested list updated the copy as well

使用deepcopy的平面列表示例:

>>> import copy
>>> i = [1,2,3]
>>> j = copy.deepcopy(i)
>>> hex(id(i)), hex(id(j))
>>> ('0x102b9b7c8', '0x102971cc8') #Both addresses are different

>>> i.append(4)
>>> j
>>> [1,2,3] #Updation of original list didn't affected copied variable

使用deepcopy的嵌套列表示例:

>>> import copy
>>> i = [1,2,3,[4,5]]
>>> j = copy.deepcopy(i)

>>> hex(id(i)), hex(id(j))
>>> ('0x102b9b7c8', '0x102971cc8') #Both addresses are still different

>>> hex(id(i[3])), hex(id(j[3]))
>>> ('0x10296f908', '0x102b9b7c8') #Nested lists have different addresses

>>> i[3].append(6)
>>> j
>>> [1,2,3,[4,5]] #Updation of original nested list didn't affected the copied variable