import copy
a = "deepak"
b = 1, 2, 3, 4
c = [1, 2, 3, 4]
d = {1: 10, 2: 20, 3: 30}
a1 = copy.copy(a)
b1 = copy.copy(b)
c1 = copy.copy(c)
d1 = copy.copy(d)
print("immutable - id(a)==id(a1)", id(a) == id(a1))
print("immutable - id(b)==id(b1)", id(b) == id(b1))
print("mutable - id(c)==id(c1)", id(c) == id(c1))
print("mutable - id(d)==id(d1)", id(d) == id(d1))
我得到了以下结果:
immutable - id(a)==id(a1) True
immutable - id(b)==id(b1) True
mutable - id(c)==id(c1) False
mutable - id(d)==id(d1) False
如果执行deepcopy:
a1 = copy.deepcopy(a)
b1 = copy.deepcopy(b)
c1 = copy.deepcopy(c)
d1 = copy.deepcopy(d)
结果是一样的:
immutable - id(a)==id(a1) True
immutable - id(b)==id(b1) True
mutable - id(c)==id(c1) False
mutable - id(d)==id(d1) False
如果我做赋值操作:
a1 = a
b1 = b
c1 = c
d1 = d
结果如下:
immutable - id(a)==id(a1) True
immutable - id(b)==id(b1) True
mutable - id(c)==id(c1) True
mutable - id(d)==id(d1) True
谁能解释一下这些副本之间的区别是什么?它与可变和不可变对象有关吗?如果有,你能解释一下吗?
下面的代码显示了底层地址在复制、深度复制和赋值时是如何受到影响的。这类似于Sohaib Farooqi用列表展示的东西,但是用类。
from copy import deepcopy, copy
class A(object):
"""docstring for A"""
def __init__(self):
super().__init__()
class B(object):
"""docstring for B"""
def __init__(self):
super().__init__()
self.myA = A()
a = B()
print("a is", a)
print("a.myA is", a.myA)
print("After copy")
b = copy(a)
print("b is", b)
print("b.myA is", b.myA)
b.myA = A()
print("-- after changing value")
print("a is", a)
print("a.myA is", a.myA)
print("b is", b)
print("b.myA is", b.myA)
print("Resetting")
print("*"*40)
a = B()
print("a is", a)
print("a.myA is", a.myA)
print("After deepcopy")
b = deepcopy(a)
print("b is", b)
print("b.myA is", b.myA)
b.myA = A()
print("-- after changing value")
print("a is", a)
print("a.myA is", a.myA)
print("b is", b)
print("b.myA is", b.myA)
print("Resetting")
print("*"*40)
a = B()
print("a is", a)
print("a.myA is", a.myA)
print("After assignment")
b = a
print("b is", b)
print("b.myA is", b.myA)
b.myA = A()
print("-- after changing value")
print("a is", a)
print("a.myA is", a.myA)
print("b is", b)
print("b.myA is", b.myA)
这段代码的输出如下:
a is <__main__.B object at 0x7f1d8ff59760>
a.myA is <__main__.A object at 0x7f1d8fe8f970>
After copy
b is <__main__.B object at 0x7f1d8fe43280>
b.myA is <__main__.A object at 0x7f1d8fe8f970>
-- after changing value
a is <__main__.B object at 0x7f1d8ff59760>
a.myA is <__main__.A object at 0x7f1d8fe8f970>
b is <__main__.B object at 0x7f1d8fe43280>
b.myA is <__main__.A object at 0x7f1d8fe85820>
Resetting
****************************************
a is <__main__.B object at 0x7f1d8fe85370>
a.myA is <__main__.A object at 0x7f1d8fe43310>
After deepcopy
b is <__main__.B object at 0x7f1d8fde3040>
b.myA is <__main__.A object at 0x7f1d8fde30d0>
-- after changing value
a is <__main__.B object at 0x7f1d8fe85370>
a.myA is <__main__.A object at 0x7f1d8fe43310>
b is <__main__.B object at 0x7f1d8fde3040>
b.myA is <__main__.A object at 0x7f1d8fe43280>
Resetting
****************************************
a is <__main__.B object at 0x7f1d8fe432b0>
a.myA is <__main__.A object at 0x7f1d8fe85820>
After assignment
b is <__main__.B object at 0x7f1d8fe432b0>
b.myA is <__main__.A object at 0x7f1d8fe85820>
-- after changing value
a is <__main__.B object at 0x7f1d8fe432b0>
a.myA is <__main__.A object at 0x7f1d8fe85370>
b is <__main__.B object at 0x7f1d8fe432b0>
b.myA is <__main__.A object at 0x7f1d8fe85370>
下面的代码演示了赋值、使用复制方法的浅复制、使用(slice)[:]的浅复制和深度复制之间的区别。下面的示例使用嵌套列表,使差异更加明显。
from copy import deepcopy
########"List assignment (does not create a copy) ############
l1 = [1,2,3, [4,5,6], [7,8,9]]
l1_assigned = l1
print(l1)
print(l1_assigned)
print(id(l1), id(l1_assigned))
print(id(l1[3]), id(l1_assigned[3]))
print(id(l1[3][0]), id(l1_assigned[3][0]))
l1[3][0] = 100
l1.pop(4)
l1.remove(1)
print(l1)
print(l1_assigned)
print("###################################")
########"List copy using copy method (shallow copy)############
l2 = [1,2,3, [4,5,6], [7,8,9]]
l2_copy = l2.copy()
print(l2)
print(l2_copy)
print(id(l2), id(l2_copy))
print(id(l2[3]), id(l2_copy[3]))
print(id(l2[3][0]), id(l2_copy[3][0]))
l2[3][0] = 100
l2.pop(4)
l2.remove(1)
print(l2)
print(l2_copy)
print("###################################")
########"List copy using slice (shallow copy)############
l3 = [1,2,3, [4,5,6], [7,8,9]]
l3_slice = l3[:]
print(l3)
print(l3_slice)
print(id(l3), id(l3_slice))
print(id(l3[3]), id(l3_slice[3]))
print(id(l3[3][0]), id(l3_slice[3][0]))
l3[3][0] = 100
l3.pop(4)
l3.remove(1)
print(l3)
print(l3_slice)
print("###################################")
########"List copy using deepcopy ############
l4 = [1,2,3, [4,5,6], [7,8,9]]
l4_deep = deepcopy(l4)
print(l4)
print(l4_deep)
print(id(l4), id(l4_deep))
print(id(l4[3]), id(l4_deep[3]))
print(id(l4[3][0]), id(l4_deep[3][0]))
l4[3][0] = 100
l4.pop(4)
l4.remove(1)
print(l4)
print(l4_deep)
print("##########################")
print(l4[2], id(l4[2]))
print(l4_deep[3], id(l4_deep[3]))
print(l4[2][0], id(l4[2][0]))
print(l4_deep[3][0], id(l4_deep[3][0]))
正常的赋值操作只是将新变量指向现有对象。文档解释了浅拷贝和深拷贝的区别:
浅拷贝和深拷贝之间的区别只与
复合对象(包含其他对象的对象,如列表或
类实例):
浅拷贝构造一个新的复合对象,然后(在可能的范围内)将对原始对象的引用插入其中。
类中找到的对象的副本,然后递归地插入到该对象中
原创。
这里有一个小示范:
import copy
a = [1, 2, 3]
b = [4, 5, 6]
c = [a, b]
使用普通赋值操作来复制:
d = c
print id(c) == id(d) # True - d is the same object as c
print id(c[0]) == id(d[0]) # True - d[0] is the same object as c[0]
使用浅拷贝:
d = copy.copy(c)
print id(c) == id(d) # False - d is now a new object
print id(c[0]) == id(d[0]) # True - d[0] is the same object as c[0]
使用深度拷贝:
d = copy.deepcopy(c)
print id(c) == id(d) # False - d is now a new object
print id(c[0]) == id(d[0]) # False - d[0] is now a new object
深度复制与嵌套结构有关。如果你有列表的列表,那么deepcopy也复制嵌套的列表,所以它是递归复制。通过复制,您有一个新的外部列表,但内部列表是引用。赋值不复制。
为前
import copy
spam = [[0, 1, 2, 3], 4, 5]
cheese = copy.copy(spam)
cheese.append(3)
cheese[0].append(3)
print(spam)
print(cheese)
输出
[[0,1,2,3,3], 4,5]
[[0,1,2,3,3], 4,5,3]
复制方法将外部列表的内容复制到新列表,但两个列表的内部列表仍然相同,因此如果你在任何列表的内部列表中做出更改,它将影响两个列表。
但是如果你使用深度复制,它也会为内部列表创建新的实例。
import copy
spam = [[0, 1, 2, 3], 4, 5]
cheese = copy.deepcopy(spam)
cheese.append(3)
cheese[0].append(3)
print(spam)
print(cheese)
输出
[0, 1, 2, 3]
[[0, 1, 2, 3, 3], 4, 5, 3]