在Java 8中,Stream.map()和Stream.flatMap()方法之间有什么区别?
当前回答
地图: 该方法以一个Function作为参数,并返回一个新的流,该流由将传递的函数应用于流的所有元素所生成的结果组成。
让我们想象一下,我有一个整数值列表(1,2,3,4,5)和一个函数接口,其逻辑是传递的整数值的平方。(e -> e * e)。
List<Integer> intList = Arrays.asList(1, 2, 3, 4, 5);
List<Integer> newList = intList.stream().map( e -> e * e ).collect(Collectors.toList());
System.out.println(newList);
输出:
[1, 4, 9, 16, 25]
如您所见,输出是一个新流,其值是输入流值的平方。
[1, 2, 3, 4, 5] -> apply e -> e * e -> [ 1*1, 2*2, 3*3, 4*4, 5*5 ] -> [1, 4, 9, 16, 25 ]
http://codedestine.com/java-8-stream-map-method/
FlatMap: - 该方法以一个函数作为参数,该函数接受一个参数T作为输入参数,并返回一个参数R的流作为返回值。当此函数应用于此流的每个元素时,它将生成一个新值流。然后,每个元素生成的这些新流的所有元素被复制到一个新流,该新流将是该方法的返回值。
让我们想象一下,我有一个学生对象列表,每个学生可以选择多个科目。
List<Student> studentList = new ArrayList<Student>();
studentList.add(new Student("Robert","5st grade", Arrays.asList(new String[]{"history","math","geography"})));
studentList.add(new Student("Martin","8st grade", Arrays.asList(new String[]{"economics","biology"})));
studentList.add(new Student("Robert","9st grade", Arrays.asList(new String[]{"science","math"})));
Set<Student> courses = studentList.stream().flatMap( e -> e.getCourse().stream()).collect(Collectors.toSet());
System.out.println(courses);
输出:
[economics, biology, geography, science, history, math]
如您所见,输出是一个新流,其值是输入流的每个元素返回的流的所有元素的集合。
[s1, s2, s3] -> [{“历史”,“数学”,“地理”},{“经济学”、“生物学”},{“科学”,“数学”}]- >采取独特的主题- - - > [经济、生物、地理、科学、历史、数学]
http://codedestine.com/java-8-stream-flatmap-method/
其他回答
map和flatMap都可以应用于一个<T>的流,它们都返回一个<R>的流。不同之处在于map操作为每个输入值生成一个输出值,而flatMap操作为每个输入值生成任意数量(零个或多个)值。
这反映在每个操作的参数中。
map操作接受一个函数,该函数针对输入流中的每个值被调用,并产生一个结果值,该结果值被发送到输出流。
The flatMap operation takes a function that conceptually wants to consume one value and produce an arbitrary number of values. However, in Java, it's cumbersome for a method to return an arbitrary number of values, since methods can return only zero or one value. One could imagine an API where the mapper function for flatMap takes a value and returns an array or a List of values, which are then sent to the output. Given that this is the streams library, a particularly apt way to represent an arbitrary number of return values is for the mapper function itself to return a stream! The values from the stream returned by the mapper are drained from the stream and are passed to the output stream. The "clumps" of values returned by each call to the mapper function are not distinguished at all in the output stream, thus the output is said to have been "flattened."
典型的用法是flatMap的mapper函数返回Stream.empty(),如果它想发送零值,或者类似于Stream。(a, b, c)如果它想返回几个值。当然,任何流都可以返回。
对于Map,我们有一个元素列表和一个(函数,动作)f,这样:
[a,b,c] f(x) => [f(a),f(b),f(c)]
对于平面映射,我们有一个元素列表,我们有一个(function,action) f,我们希望结果是扁平的:
[[a,b],[c,d,e]] f(x) =>[f(a),f(b),f(c),f(d),f(e)]
map()和flatMap()
map ()
只接受一个函数<T, R>一个lambda参数,其中T是元素,R是使用T构建的返回元素。最后,我们将有一个带有类型为R的对象的流。一个简单的例子可以是:
Stream
.of(1,2,3,4,5)
.map(myInt -> "preFix_"+myInt)
.forEach(System.out::println);
它只是取Type Integer的元素1到5,使用每个元素从String类型中构建一个值为“prefix_”+integer_value的新元素,并打印出来。
flatMap ()
知道flatMap()接受一个函数F<T, R> where是很有用的
T is a type from which a Stream can be built from/with. It can be a List (T.stream()), an array (Arrays.stream(someArray)), etc.. anything that from which a Stream can be with/or form. in the example below each dev has many languages, so dev. Languages is a List and will use a lambda parameter. R is the resulting Stream that will be built using T. Knowing that we have many instances of T, we will naturally have many Streams from R. All these Streams from Type R will now be combined into one single 'flat' Stream from Type R.
例子
Bachiri Taoufiq的例子(见这里的答案)1简单易懂。为了清晰起见,假设我们有一个开发团队:
dev_team = {dev_1,dev_2,dev_3}
,每个开发人员都懂多种语言:
dev_1 = {lang_a,lang_b,lang_c},
dev_2 = {lang_d},
dev_3 = {lang_e,lang_f}
在dev_team上应用Stream.map()来获取每个开发人员的语言:
dev_team.map(dev -> dev.getLanguages())
会给你这样的结构:
{
{lang_a,lang_b,lang_c},
{lang_d},
{lang_e,lang_f}
}
它基本上是一个List<List<Languages>> /Object[Languages[]]。不是很漂亮,也不像java8 !!
使用Stream.flatMap(),你可以“扁平化”的东西,因为它采取上述结构 并将其转换为{lang_a, lang_b, lang_c, lang_d, lang_e, lang_f},基本上可以作为List<Languages>/Language[]/etc…
所以最后,你的代码会像这样更有意义:
dev_team
.stream() /* {dev_1,dev_2,dev_3} */
.map(dev -> dev.getLanguages()) /* {{lang_a,...,lang_c},{lang_d}{lang_e,lang_f}}} */
.flatMap(languages -> languages.stream()) /* {lang_a,...,lang_d, lang_e, lang_f} */
.doWhateverWithYourNewStreamHere();
或者仅仅是:
dev_team
.stream() /* {dev_1,dev_2,dev_3} */
.flatMap(dev -> dev.getLanguages().stream()) /* {lang_a,...,lang_d, lang_e, lang_f} */
.doWhateverWithYourNewStreamHere();
何时使用map()和flatMap():
Use map() when each element of type T from your stream is supposed to be mapped/transformed to a single element of type R. The result is a mapping of type (1 start element -> 1 end element) and new stream of elements of type R is returned. Use flatMap() when each element of type T from your stream is supposed to mapped/transformed to a Collections of elements of type R. The result is a mapping of type (1 start element -> n end elements). These Collections are then merged (or flattened) to a new stream of elements of type R. This is useful for example to represent nested loops.
Java 8 之前:
List<Foo> myFoos = new ArrayList<Foo>();
for(Foo foo: myFoos){
for(Bar bar: foo.getMyBars()){
System.out.println(bar.getMyName());
}
}
后Java 8
myFoos
.stream()
.flatMap(foo -> foo.getMyBars().stream())
.forEach(bar -> System.out.println(bar.getMyName()));
Oracle关于Optional的文章强调了map和flatmap的区别:
String version = computer.map(Computer::getSoundcard)
.map(Soundcard::getUSB)
.map(USB::getVersion)
.orElse("UNKNOWN");
Unfortunately, this code doesn't compile. Why? The variable computer is of type Optional<Computer>, so it is perfectly correct to call the map method. However, getSoundcard() returns an object of type Optional. This means the result of the map operation is an object of type Optional<Optional<Soundcard>>. As a result, the call to getUSB() is invalid because the outermost Optional contains as its value another Optional, which of course doesn't support the getUSB() method. With streams, the flatMap method takes a function as an argument, which returns another stream. This function is applied to each element of a stream, which would result in a stream of streams. However, flatMap has the effect of replacing each generated stream by the contents of that stream. In other words, all the separate streams that are generated by the function get amalgamated or "flattened" into one single stream. What we want here is something similar, but we want to "flatten" a two-level Optional into one. Optional also supports a flatMap method. Its purpose is to apply the transformation function on the value of an Optional (just like the map operation does) and then flatten the resulting two-level Optional into a single one. So, to make our code correct, we need to rewrite it as follows using flatMap:
String version = computer.flatMap(Computer::getSoundcard)
.flatMap(Soundcard::getUSB)
.map(USB::getVersion)
.orElse("UNKNOWN");
第一个flatMap确保返回Optional<Soundcard> 而不是一个Optional<Optional<Soundcard>>,和第二个flatMap 实现相同的目的,返回Optional<USB>。注意 第三个调用只需要一个map(),因为getVersion()返回一个 字符串而不是可选对象。
http://www.oracle.com/technetwork/articles/java/java8-optional-2175753.html
传递给流的函数。Map必须返回一个对象。这意味着输入流中的每个对象都会导致输出流中的一个对象。
传递给流的函数。flatMap为每个对象返回一个流。这意味着该函数可以为每个输入对象返回任意数量的对象(包括none)。然后将结果流连接到一个输出流。
推荐文章
- 在Java流是peek真的只是调试?
- Recyclerview不调用onCreateViewHolder
- 将JSON字符串转换为HashMap
- web - inf在Java EE web应用程序中用于什么?
- Java 8: Lambda-Streams,过滤方法与异常
- 将JsonNode转换为POJO
- 如何查看IntelliJ中的编译错误列表?
- Java SimpleDateFormat("yyyy-MM-dd' t ' hh:mm:ss' z '")给出的时区为IST
- 杰克逊克服下划线,支持骆驼案
- List、List<?>, List<T>, List<E>, List<Object>
- 在Java中转换字符串到日历对象
- 在java中使用wait()和notify()的简单场景
- 增强的for循环中的Null检查
- c# vs Java Enum(适合c#新手)
- 如何在不强制转换的情况下将double转换为long ?