我知道Python列表有一个方法可以返回某个对象的第一个索引:
>>> xs = [1, 2, 3]
>>> xs.index(2)
1
NumPy数组也有类似的东西吗?
我知道Python列表有一个方法可以返回某个对象的第一个索引:
>>> xs = [1, 2, 3]
>>> xs.index(2)
1
NumPy数组也有类似的东西吗?
当前回答
如果你只需要第一次出现一个值的索引,你可以使用nonzero(或where,在这种情况下相当于相同的东西):
>>> t = array([1, 1, 1, 2, 2, 3, 8, 3, 8, 8])
>>> nonzero(t == 8)
(array([6, 8, 9]),)
>>> nonzero(t == 8)[0][0]
6
如果需要多个值中的每个值的第一个索引,显然可以重复执行上述操作,但有一个技巧可能更快。下面的代码查找每个子序列的第一个元素的下标:
>>> nonzero(r_[1, diff(t)[:-1]])
(array([0, 3, 5, 6, 7, 8]),)
注意,它找到了3s的子序列和8s的子序列的开头:
[1, 1, 1, 2, 2, 3, 8, 3, 8, 8]
这和求每个值的第一次出现有点不同。在你的程序中,你可以使用t的排序版本来得到你想要的:
>>> st = sorted(t)
>>> nonzero(r_[1, diff(st)[:-1]])
(array([0, 3, 5, 7]),)
其他回答
您还可以将NumPy数组转换为list in - air并获取其索引。例如,
l = [1,2,3,4,5] # Python list
a = numpy.array(l) # NumPy array
i = a.tolist().index(2) # i will return index of 2
print i
它会输出1。
注意:这是python 2.7版本
您可以使用lambda函数来处理这个问题,它既适用于NumPy数组,也适用于列表。
your_list = [11, 22, 23, 44, 55]
result = filter(lambda x:your_list[x]>30, range(len(your_list)))
#result: [3, 4]
import numpy as np
your_numpy_array = np.array([11, 22, 23, 44, 55])
result = filter(lambda x:your_numpy_array [x]>30, range(len(your_list)))
#result: [3, 4]
你可以用
result[0]
获取筛选元素的第一个索引。
对于python 3.6,使用
list(result)
而不是
result
是的,给定一个数组,数组和一个值,要搜索的项,你可以使用np。的地方:
itemindex = numpy.where(array == item)
结果是一个元组,首先是所有的行索引,然后是所有的列索引。
例如,如果一个数组是二维的,它包含你的项目在两个位置,那么
array[itemindex[0][0]][itemindex[1][0]]
将等于你的项目,因此将是:
array[itemindex[0][1]][itemindex[1][1]]
如果你想用它作为其他东西的索引,如果数组是可广播的,你可以使用布尔索引;不需要显式索引。要做到这一点,绝对最简单的方法是基于真值进行索引。
other_array[first_array == item]
任何布尔运算都可以:
a = numpy.arange(100)
other_array[first_array > 50]
非零方法也接受布尔值:
index = numpy.nonzero(first_array == item)[0][0]
两个0分别表示索引元组(假设first_array是1D)和索引数组中的第一项。
numpy_indexed包(免责声明,我是它的作者)包含一个向量化的等效list。ndarray的索引;那就是:
sequence_of_arrays = [[0, 1], [1, 2], [-5, 0]]
arrays_to_query = [[-5, 0], [1, 0]]
import numpy_indexed as npi
idx = npi.indices(sequence_of_arrays, arrays_to_query, missing=-1)
print(idx) # [2, -1]
这个解决方案具有向量化的性能,可以推广到ndarray,并且有各种处理缺失值的方法。