我知道Python列表有一个方法可以返回某个对象的第一个索引:

>>> xs = [1, 2, 3]
>>> xs.index(2)
1

NumPy数组也有类似的东西吗?


当前回答

index_lst_form_numpy = pd.DataFrame(df).reset_index()["index"].tolist()

其他回答

NumPy中有很多操作可以放在一起来完成这个任务。这将返回等于item的元素的下标:

numpy.nonzero(array - item)

然后你可以取列表的第一个元素来得到一个元素。

用ndindex

样本数组

arr = np.array([[1,4],
                 [2,3]])
print(arr)

...[[1,4],
    [2,3]]
 

创建一个空列表来存储索引和元素元组

 index_elements = []
 for i in np.ndindex(arr.shape):
     index_elements.append((arr[i],i))

 

将元组列表转换为字典

 index_elements = dict(index_elements)

键是元素,值是元素 索引——使用键来访问索引

 index_elements[4] 
  
output
  ... (0,1)
  

对于一维排序数组,使用numpy会更简单、更有效。searchsorted,返回一个NumPy整数(位置)。例如,

arr = np.array([1, 1, 1, 2, 3, 3, 4])
i = np.searchsorted(arr, 3)

只要确保数组已经排序

还要检查返回的索引i是否包含被搜索的元素,因为searchsorted的主要目标是找到应该插入元素以保持顺序的索引。

if arr[i] == 3:
    print("present")
else:
    print("not present")
index_lst_form_numpy = pd.DataFrame(df).reset_index()["index"].tolist()

找到了另一个循环解决方案:

new_array_of_indicies = []

for i in range(len(some_array)):
  if some_array[i] == some_value:
    new_array_of_indicies.append(i)