我只是好奇,为了在二进制中表示-1,是否有一个原因,使用了2的补码:翻转位并加1?
-1由11111111(2的补码)表示,而不是(对我来说更直观)10000001,10000001是二进制1,第一位为负标志。
免责声明:我的工作不依赖二进制算术!
我只是好奇,为了在二进制中表示-1,是否有一个原因,使用了2的补码:翻转位并加1?
-1由11111111(2的补码)表示,而不是(对我来说更直观)10000001,10000001是二进制1,第一位为负标志。
免责声明:我的工作不依赖二进制算术!
当前回答
这是为了简化数字的和和和差。2的补数中一个负数和一个正数的和与正常方式的和是一样的。
其他回答
有不同类型的表示,它们是:
无符号数表示 有符号数字表示 补体表示 二补体表示法
无符号数字表示,仅用于表示正数
有符号的数字表示,用来表示正数和负数。在有符号数表示中,MSB位表示符号位,其余位表示数字。当MSB为0时表示数字为正,当MSB为1时表示数字为负。
有符号数表示的问题是0有两个值。
补码表示法的问题是0有两个值。
但如果我们使用2的补体表示,那么0就只有一个值,这就是为什么我们用2的补体形式表示负数。
来源:负数为什么以二进制补码形式存储
我有一个在某些情况下很重要的小补充:在这些限制条件下,2的恭维是唯一可能的表示:
无符号数和二的补数是恒等交换环。它们之间有一个同态。 它们共享相同的表示,对负数有不同的分支切割,(因此,为什么它们之间的加法和乘法是相同的)。 高位决定符号。
要知道为什么,它有助于降低基数;例如Z_4。
星座、星等和一个人的赞美都不能形成一个具有相同数量元素的环;一个症状是双零。因此,很难在边缘上工作;为了在数学上保持一致,它们需要检查溢出或陷阱表示。
用补法执行减法的优点是减少了硬件 的复杂性。不需要不同的数字电路来进行加减法运算 加法和减法只能由加法器执行。
It's worthwhile to note that on some early adding machines, before the days of digital computers, subtraction would be performed by having the operator enter values using a different colored set of legends on each key (so each key would enter nine minus the number to be subtracted), and press a special button would would assume a carry into a calculation. Thus, on a six-digit machine, to subtract 1234 from a value, the operator would hit keys that would normally indicate "998,765" and hit a button to add that value plus one to the calculation in progress. Two's complement arithmetic is simply the binary equivalent of that earlier "ten's-complement" arithmetic.
A major advantage of two's-complement representation which hasn't yet been mentioned here is that the lower bits of a two's-complement sum, difference, or product are dependent only upon the corresponding bits of the operands. The reason that the 8 bit signed value for -1 is 11111111 is that subtracting any integer whose lowest 8 bits are 00000001 from any other integer whose lowest 8 bits are 0000000 will yield an integer whose lowest 8 bits are 11111111. Mathematically, the value -1 would be an infinite string of 1's, but all values within the range of a particular integer type will either be all 1's or all 0's past a certain point, so it's convenient for computers to "sign-extend" the most significant bit of a number as though it represented an infinite number of 1's or 0's.
Two's-complement is just about the only signed-number representation that works well when dealing with types larger than a binary machine's natural word size, since when performing addition or subtraction, code can fetch the lowest chunk of each operand, compute the lowest chunk of the result, and store that, then load the next chunk of each operand, compute the next chunk of the result, and store that, etc. Thus, even a processor which requires all additions and subtractions to go through a single 8-bit register can handle 32-bit signed numbers reasonably efficiently (slower than with a 32-bit register, of course, but still workable).
当使用C标准所允许的任何其他有符号表示时,结果的每一位都可能受到操作数的任何位的影响,这就需要将整个值一次保存在寄存器中,或者在计算之后进行额外的步骤,至少在某些情况下,需要读取、修改和重写结果的每个块。