有很多MD5 JavaScript实现。 有人知道哪一个是最先进的,修复最多的,最快的吗?
我需要它来做这个工具。
有很多MD5 JavaScript实现。 有人知道哪一个是最先进的,修复最多的,最快的吗?
我需要它来做这个工具。
当前回答
我听说Joseph的Myers实现非常快。此外,他还有一篇关于Javascript优化的长篇文章,描述了他在编写实现时学到的东西。对于任何对性能javascript感兴趣的人来说,这是一本很好的读物。
http://www.webreference.com/programming/javascript/jkm3/
他的MD5实现可以在这里找到
其他回答
我只需要支持支持类型化数组(DataView, ArrayBuffer等)的HTML5浏览器。 我认为我采取了约瑟夫迈尔斯代码,并修改它,以支持传递在Uint8Array。我没有捕捉到所有的改进,仍然可能有一些char()数组构件可以改进。我需要它来添加到PouchDB项目。
var PouchUtils = {};
PouchUtils.Crypto = {};
(function () {
PouchUtils.Crypto.MD5 = function (uint8Array) {
function md5cycle(x, k) {
var a = x[0], b = x[1], c = x[2], d = x[3];
a = ff(a, b, c, d, k[0], 7, -680876936);
d = ff(d, a, b, c, k[1], 12, -389564586);
c = ff(c, d, a, b, k[2], 17, 606105819);
b = ff(b, c, d, a, k[3], 22, -1044525330);
a = ff(a, b, c, d, k[4], 7, -176418897);
d = ff(d, a, b, c, k[5], 12, 1200080426);
c = ff(c, d, a, b, k[6], 17, -1473231341);
b = ff(b, c, d, a, k[7], 22, -45705983);
a = ff(a, b, c, d, k[8], 7, 1770035416);
d = ff(d, a, b, c, k[9], 12, -1958414417);
c = ff(c, d, a, b, k[10], 17, -42063);
b = ff(b, c, d, a, k[11], 22, -1990404162);
a = ff(a, b, c, d, k[12], 7, 1804603682);
d = ff(d, a, b, c, k[13], 12, -40341101);
c = ff(c, d, a, b, k[14], 17, -1502002290);
b = ff(b, c, d, a, k[15], 22, 1236535329);
a = gg(a, b, c, d, k[1], 5, -165796510);
d = gg(d, a, b, c, k[6], 9, -1069501632);
c = gg(c, d, a, b, k[11], 14, 643717713);
b = gg(b, c, d, a, k[0], 20, -373897302);
a = gg(a, b, c, d, k[5], 5, -701558691);
d = gg(d, a, b, c, k[10], 9, 38016083);
c = gg(c, d, a, b, k[15], 14, -660478335);
b = gg(b, c, d, a, k[4], 20, -405537848);
a = gg(a, b, c, d, k[9], 5, 568446438);
d = gg(d, a, b, c, k[14], 9, -1019803690);
c = gg(c, d, a, b, k[3], 14, -187363961);
b = gg(b, c, d, a, k[8], 20, 1163531501);
a = gg(a, b, c, d, k[13], 5, -1444681467);
d = gg(d, a, b, c, k[2], 9, -51403784);
c = gg(c, d, a, b, k[7], 14, 1735328473);
b = gg(b, c, d, a, k[12], 20, -1926607734);
a = hh(a, b, c, d, k[5], 4, -378558);
d = hh(d, a, b, c, k[8], 11, -2022574463);
c = hh(c, d, a, b, k[11], 16, 1839030562);
b = hh(b, c, d, a, k[14], 23, -35309556);
a = hh(a, b, c, d, k[1], 4, -1530992060);
d = hh(d, a, b, c, k[4], 11, 1272893353);
c = hh(c, d, a, b, k[7], 16, -155497632);
b = hh(b, c, d, a, k[10], 23, -1094730640);
a = hh(a, b, c, d, k[13], 4, 681279174);
d = hh(d, a, b, c, k[0], 11, -358537222);
c = hh(c, d, a, b, k[3], 16, -722521979);
b = hh(b, c, d, a, k[6], 23, 76029189);
a = hh(a, b, c, d, k[9], 4, -640364487);
d = hh(d, a, b, c, k[12], 11, -421815835);
c = hh(c, d, a, b, k[15], 16, 530742520);
b = hh(b, c, d, a, k[2], 23, -995338651);
a = ii(a, b, c, d, k[0], 6, -198630844);
d = ii(d, a, b, c, k[7], 10, 1126891415);
c = ii(c, d, a, b, k[14], 15, -1416354905);
b = ii(b, c, d, a, k[5], 21, -57434055);
a = ii(a, b, c, d, k[12], 6, 1700485571);
d = ii(d, a, b, c, k[3], 10, -1894986606);
c = ii(c, d, a, b, k[10], 15, -1051523);
b = ii(b, c, d, a, k[1], 21, -2054922799);
a = ii(a, b, c, d, k[8], 6, 1873313359);
d = ii(d, a, b, c, k[15], 10, -30611744);
c = ii(c, d, a, b, k[6], 15, -1560198380);
b = ii(b, c, d, a, k[13], 21, 1309151649);
a = ii(a, b, c, d, k[4], 6, -145523070);
d = ii(d, a, b, c, k[11], 10, -1120210379);
c = ii(c, d, a, b, k[2], 15, 718787259);
b = ii(b, c, d, a, k[9], 21, -343485551);
x[0] = add32(a, x[0]);
x[1] = add32(b, x[1]);
x[2] = add32(c, x[2]);
x[3] = add32(d, x[3]);
}
function cmn(q, a, b, x, s, t) {
a = add32(add32(a, q), add32(x, t));
return add32((a << s) | (a >>> (32 - s)), b);
}
function ff(a, b, c, d, x, s, t) {
return cmn((b & c) | ((~b) & d), a, b, x, s, t);
}
function gg(a, b, c, d, x, s, t) {
return cmn((b & d) | (c & (~d)), a, b, x, s, t);
}
function hh(a, b, c, d, x, s, t) {
return cmn(b ^ c ^ d, a, b, x, s, t);
}
function ii(a, b, c, d, x, s, t) {
return cmn(c ^ (b | (~d)), a, b, x, s, t);
}
function md51(s) {
txt = '';
var n = s.length,
state = [1732584193, -271733879, -1732584194, 271733878], i;
for (i = 64; i <= s.length; i += 64) {
md5cycle(state, md5blk(s.subarray(i - 64, i)));
}
s = s.subarray(i - 64);
var tail = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];
for (i = 0; i < s.length; i++)
tail[i >> 2] |= s[i] << ((i % 4) << 3);
tail[i >> 2] |= 0x80 << ((i % 4) << 3);
if (i > 55) {
md5cycle(state, tail);
for (i = 0; i < 16; i++) tail[i] = 0;
}
tail[14] = n * 8;
md5cycle(state, tail);
return state;
}
/* there needs to be support for Unicode here,
* unless we pretend that we can redefine the MD-5
* algorithm for multi-byte characters (perhaps
* by adding every four 16-bit characters and
* shortening the sum to 32 bits). Otherwise
* I suggest performing MD-5 as if every character
* was two bytes--e.g., 0040 0025 = @%--but then
* how will an ordinary MD-5 sum be matched?
* There is no way to standardize text to something
* like UTF-8 before transformation; speed cost is
* utterly prohibitive. The JavaScript standard
* itself needs to look at this: it should start
* providing access to strings as preformed UTF-8
* 8-bit unsigned value arrays.
*/
function md5blk(s) { /* I figured global was faster. */
var md5blks = [], i; /* Andy King said do it this way. */
for (i = 0; i < 64; i += 4) {
md5blks[i >> 2] = s[i]
+ (s[i + 1] << 8)
+ (s[i + 2] << 16)
+ (s[i + 3] << 24);
}
return md5blks;
}
var hex_chr = '0123456789abcdef'.split('');
function rhex(n) {
var s = '', j = 0;
for (; j < 4; j++)
s += hex_chr[(n >> (j * 8 + 4)) & 0x0F]
+ hex_chr[(n >> (j * 8)) & 0x0F];
return s;
}
function hex(x) {
for (var i = 0; i < x.length; i++)
x[i] = rhex(x[i]);
return x.join('');
}
function md5(s) {
return hex(md51(s));
}
function add32(a, b) {
return (a + b) & 0xFFFFFFFF;
}
return md5(uint8Array);
};
})();
我找到了许多关于这个主题的文章。 他们都建议约瑟夫·迈耶斯实施。
在某些测试中,请参阅:http://jsperf.com/md5-shootout
在我对终极速度的追求中,我看了这段代码,我看到它可以改进。所以我基于Joseph Meyers代码创建了一个新的JS脚本。
参见改进的约瑟夫迈耶斯代码
目前最快的md5实现(基于Joseph Myers的代码):
https://github.com/iReal/FastMD5
jsPerf比较:http://jsperf.com/md5-shootout/63
令我烦恼的是,我找不到一个既快速又支持Unicode字符串的实现。
所以我做了一个支持Unicode字符串的实现,并且仍然比目前最快的ascii-only-strings实现更快(在编写时):
https://github.com/gorhill/yamd5.js
基于Joseph Myers的代码,但使用了TypedArrays,并进行了其他改进。
您还可以检查我的md5实现。应该是大约。和上面其他贴的一样。不幸的是,性能受到内环的限制,不可能进一步优化。