虽然我从来都不需要这样做,但我突然意识到用Python创建一个不可变对象可能有点棘手。你不能只是覆盖__setattr__,因为这样你甚至不能在__init__中设置属性。子类化一个元组是一个有效的技巧:

class Immutable(tuple):
    
    def __new__(cls, a, b):
        return tuple.__new__(cls, (a, b))

    @property
    def a(self):
        return self[0]
        
    @property
    def b(self):
        return self[1]

    def __str__(self):
        return "<Immutable {0}, {1}>".format(self.a, self.b)
    
    def __setattr__(self, *ignored):
        raise NotImplementedError

    def __delattr__(self, *ignored):
        raise NotImplementedError

但是你可以通过self[0]和self[1]访问a和b变量,这很烦人。

这在Pure Python中可行吗?如果不是,我该如何用C扩展来做呢?

(只能在python3中工作的答案是可以接受的)。

更新:

从Python 3.7开始,要使用的方法是使用@dataclass装饰器,参见最新接受的答案。


当前回答

就像字典一样

我有一个开源库,在那里我以函数的方式做事情,所以在不可变对象中移动数据是有帮助的。但是,我不希望必须转换我的数据对象以便客户机与它们交互。所以,我想到了这个-它给你一个字典一样的对象,这是不可变的+一些帮助方法。

这要归功于Sven Marnach对限制属性更新和删除的基本执行的回答。

import json 
# ^^ optional - If you don't care if it prints like a dict
# then rip this and __str__ and __repr__ out

class Immutable(object):

    def __init__(self, **kwargs):
        """Sets all values once given
        whatever is passed in kwargs
        """
        for k,v in kwargs.items():
            object.__setattr__(self, k, v)

    def __setattr__(self, *args):
        """Disables setting attributes via
        item.prop = val or item['prop'] = val
        """
        raise TypeError('Immutable objects cannot have properties set after init')

    def __delattr__(self, *args):
        """Disables deleting properties"""
        raise TypeError('Immutable objects cannot have properties deleted')

    def __getitem__(self, item):
        """Allows for dict like access of properties
        val = item['prop']
        """
        return self.__dict__[item]

    def __repr__(self):
        """Print to repl in a dict like fashion"""
        return self.pprint()

    def __str__(self):
        """Convert to a str in a dict like fashion"""
        return self.pprint()

    def __eq__(self, other):
        """Supports equality operator
        immutable({'a': 2}) == immutable({'a': 2})"""
        if other is None:
            return False
        return self.dict() == other.dict()

    def keys(self):
        """Paired with __getitem__ supports **unpacking
        new = { **item, **other }
        """
        return self.__dict__.keys()

    def get(self, *args, **kwargs):
        """Allows for dict like property access
        item.get('prop')
        """
        return self.__dict__.get(*args, **kwargs)

    def pprint(self):
        """Helper method used for printing that
        formats in a dict like way
        """
        return json.dumps(self,
            default=lambda o: o.__dict__,
            sort_keys=True,
            indent=4)

    def dict(self):
        """Helper method for getting the raw dict value
        of the immutable object"""
        return self.__dict__

辅助方法

def update(obj, **kwargs):
    """Returns a new instance of the given object with
    all key/val in kwargs set on it
    """
    return immutable({
        **obj,
        **kwargs
    })

def immutable(obj):
    return Immutable(**obj)

例子

obj = immutable({
    'alpha': 1,
    'beta': 2,
    'dalet': 4
})

obj.alpha # 1
obj['alpha'] # 1
obj.get('beta') # 2

del obj['alpha'] # TypeError
obj.alpha = 2 # TypeError

new_obj = update(obj, alpha=10)

new_obj is not obj # True
new_obj.get('alpha') == 10 # True

其他回答

这种方式不停止对象。__setattr__从工作,但我仍然发现它有用:

class A(object):

    def __new__(cls, children, *args, **kwargs):
        self = super(A, cls).__new__(cls)
        self._frozen = False  # allow mutation from here to end of  __init__
        # other stuff you need to do in __new__ goes here
        return self

    def __init__(self, *args, **kwargs):
        super(A, self).__init__()
        self._frozen = True  # prevent future mutation

    def __setattr__(self, name, value):
        # need to special case setting _frozen.
        if name != '_frozen' and self._frozen:
            raise TypeError('Instances are immutable.')
        else:
            super(A, self).__setattr__(name, value)

    def __delattr__(self, name):
        if self._frozen:
            raise TypeError('Instances are immutable.')
        else:
            super(A, self).__delattr__(name)

你可能需要根据用例重写更多的东西(比如__setitem__)。

这里没有包括的是完全不可变性……不仅仅是父对象,还有所有的子对象。例如,元组/frozensets可能是不可变的,但它所属的对象可能不是。下面是一个小的(不完整的)版本,它在执行不变性方面做得很好:

# Initialize lists
a = [1,2,3]
b = [4,5,6]
c = [7,8,9]

l = [a,b]

# We can reassign in a list 
l[0] = c

# But not a tuple
t = (a,b)
#t[0] = c -> Throws exception
# But elements can be modified
t[0][1] = 4
t
([1, 4, 3], [4, 5, 6])
# Fix it back
t[0][1] = 2

li = ImmutableObject(l)
li
[[1, 2, 3], [4, 5, 6]]
# Can't assign
#li[0] = c will fail
# Can reference
li[0]
[1, 2, 3]
# But immutability conferred on returned object too
#li[0][1] = 4 will throw an exception

# Full solution should wrap all the comparison e.g. decorators.
# Also, you'd usually want to add a hash function, i didn't put
# an interface for that.

class ImmutableObject(object):
    def __init__(self, inobj):
        self._inited = False
        self._inobj = inobj
        self._inited = True

    def __repr__(self):
        return self._inobj.__repr__()

    def __str__(self):
        return self._inobj.__str__()

    def __getitem__(self, key):
        return ImmutableObject(self._inobj.__getitem__(key))

    def __iter__(self):
        return self._inobj.__iter__()

    def __setitem__(self, key, value):
        raise AttributeError, 'Object is read-only'

    def __getattr__(self, key):
        x = getattr(self._inobj, key)
        if callable(x):
              return x
        else:
              return ImmutableObject(x)

    def __hash__(self):
        return self._inobj.__hash__()

    def __eq__(self, second):
        return self._inobj.__eq__(second)

    def __setattr__(self, attr, value):
        if attr not in  ['_inobj', '_inited'] and self._inited == True:
            raise AttributeError, 'Object is read-only'
        object.__setattr__(self, attr, value)

从Python 3.7开始,你可以在你的类中使用@dataclass装饰器,它将像结构体一样是不可变的!不过,它可能会也可能不会将__hash__()方法添加到类中。引用:

hash() is used by built-in hash(), and when objects are added to hashed collections such as dictionaries and sets. Having a hash() implies that instances of the class are immutable. Mutability is a complicated property that depends on the programmer’s intent, the existence and behavior of eq(), and the values of the eq and frozen flags in the dataclass() decorator. By default, dataclass() will not implicitly add a hash() method unless it is safe to do so. Neither will it add or change an existing explicitly defined hash() method. Setting the class attribute hash = None has a specific meaning to Python, as described in the hash() documentation. If hash() is not explicit defined, or if it is set to None, then dataclass() may add an implicit hash() method. Although not recommended, you can force dataclass() to create a hash() method with unsafe_hash=True. This might be the case if your class is logically immutable but can nonetheless be mutated. This is a specialized use case and should be considered carefully.

下面是上面链接的文档中的例子:

@dataclass
class InventoryItem:
    '''Class for keeping track of an item in inventory.'''
    name: str
    unit_price: float
    quantity_on_hand: int = 0

    def total_cost(self) -> float:
        return self.unit_price * self.quantity_on_hand

您可以覆盖setattr,仍然使用init来设置变量。你可以使用超类setattr。这是代码。

class Immutable:
    __slots__ = ('a','b')
    def __init__(self, a , b):
        super().__setattr__('a',a)
        super().__setattr__('b',b)

    def __str__(self):
        return "".format(self.a, self.b)

    def __setattr__(self, *ignored):
        raise NotImplementedError

    def __delattr__(self, *ignored):
        raise NotImplementedError

另一个想法是完全不允许__setattr__而使用object。构造函数中的__setattr__:

class Point(object):
    def __init__(self, x, y):
        object.__setattr__(self, "x", x)
        object.__setattr__(self, "y", y)
    def __setattr__(self, *args):
        raise TypeError
    def __delattr__(self, *args):
        raise TypeError

当然你可以用object。__setattr__(p, "x", 3)来修改一个Point实例p,但您的原始实现遭受同样的问题(尝试tuple。__setattr__(i, "x", 42)在一个不可变实例)。

您可以在原始实现中应用相同的技巧:去掉__getitem__(),并在属性函数中使用tuple.__getitem__()。