给定一个包含“BoolCol”列的DataFrame,我们希望找到其中“BoolCol”值== True的DataFrame的索引

我目前有迭代的方式来做到这一点,这是完美的:

for i in range(100,3000):
    if df.iloc[i]['BoolCol']== True:
         print i,df.iloc[i]['BoolCol']

但这不是熊猫的正确做法。经过一些研究,我目前正在使用以下代码:

df[df['BoolCol'] == True].index.tolist()

这一个给了我一个索引列表,但它们不匹配,当我检查它们时,我这样做:

df.iloc[i]['BoolCol']

结果实际上是假的!!

熊猫的正确做法是什么?


当前回答

简单的方法是在过滤之前重置DataFrame的索引:

df_reset = df.reset_index()
df_reset[df_reset['BoolCol']].index.tolist()

有点俗气,但是很快!

其他回答

首先,当目标列是bool类型时,你可以检查查询(PS:关于如何使用它,请检查链接)

df.query('BoolCol')
Out[123]: 
    BoolCol
10     True
40     True
50     True

在我们通过布尔列过滤原始df之后,我们可以选择索引。

df=df.query('BoolCol')
df.index
Out[125]: Int64Index([10, 40, 50], dtype='int64')

熊猫也有非零,我们只是选择True行的位置,并使用它切片数据帧或索引

df.index[df.BoolCol.values.nonzero()[0]]
Out[128]: Int64Index([10, 40, 50], dtype='int64')

另一种方法是使用pipe()对BoolCol的索引进行管道索引。就性能而言,它与使用[].1的规范索引一样高效

df['BoolCol'].pipe(lambda x: x.index[x])

如果BoolCol实际上是多个比较的结果,并且您希望使用方法链接将所有方法放在一个管道中,这尤其有用。

例如,如果你想获得NumCol值大于0.5、BoolCol值为True且NumCol值和BoolCol值的乘积大于0的行索引,你可以通过eval()对表达式求值并对结果调用pipe()来执行索引

df.eval("NumCol > 0.5 and BoolCol and NumCol * BoolCol >0").pipe(lambda x: x.index[x])


1:下面的基准测试使用了一个有20mil行的数据帧(平均过滤了一半的行),并检索了它们的索引。与其他有效的选项相比,通过pipe()进行链接的方法做得非常好。

n = 20_000_000
df = pd.DataFrame({'NumCol': np.random.rand(n).astype('float16'), 
                   'BoolCol': np.random.default_rng().choice([True, False], size=n)})

%timeit df.index[df['BoolCol']]
# 181 ms ± 2.47 ms per loop (mean ± std. dev. of 10 runs, 1000 loops each)

%timeit df['BoolCol'].pipe(lambda x: x.index[x])
# 181 ms ± 1.08 ms per loop (mean ± std. dev. of 10 runs, 1000 loops each)

%timeit df['BoolCol'].loc[lambda x: x].index
# 297 ms ± 7.15 ms per loop (mean ± std. dev. of 10 runs, 1000 loops each)

2:对于一个20 mil的行数据帧,以与1)相同的方式构建基准,你会发现这里提出的方法是最快的选择。它比位操作符链执行得更好,因为根据设计,eval()在一个大数据帧上执行多个操作的速度比向量化的Python操作快,而且它比query()更节省内存,因为与query()不同,eval().pipe(…)不需要创建一个切片数据帧的副本来获得它的索引。

df。Iloc [i]返回df的第i行。I不是指索引标签,I是一个基于0的索引。

相反,属性index返回实际的索引标签,而不是数字行索引:

df.index[df['BoolCol'] == True].tolist()

或者说,

df.index[df['BoolCol']].tolist()

通过使用DataFrame,你可以清楚地看到其中的区别 不等于该行数值位置的非默认索引:

df = pd.DataFrame({'BoolCol': [True, False, False, True, True]},
       index=[10,20,30,40,50])

In [53]: df
Out[53]: 
   BoolCol
10    True
20   False
30   False
40    True
50    True

[5 rows x 1 columns]

In [54]: df.index[df['BoolCol']].tolist()
Out[54]: [10, 40, 50]

如果你想使用索引,

In [56]: idx = df.index[df['BoolCol']]

In [57]: idx
Out[57]: Int64Index([10, 40, 50], dtype='int64')

然后你可以使用loc而不是iloc来选择行:

In [58]: df.loc[idx]
Out[58]: 
   BoolCol
10    True
40    True
50    True

[3 rows x 1 columns]

注意,loc也可以接受布尔数组:

In [55]: df.loc[df['BoolCol']]
Out[55]: 
   BoolCol
10    True
40    True
50    True

[3 rows x 1 columns]

如果你有一个布尔数组,掩码,并且需要序号索引值,你可以使用np.flatnonzero来计算它们:

In [110]: np.flatnonzero(df['BoolCol'])
Out[112]: array([0, 3, 4])

使用df。Iloc按序号索引选择行:

In [113]: df.iloc[np.flatnonzero(df['BoolCol'])]
Out[113]: 
   BoolCol
10    True
40    True
50    True

简单的方法是在过滤之前重置DataFrame的索引:

df_reset = df.reset_index()
df_reset[df_reset['BoolCol']].index.tolist()

有点俗气,但是很快!

我扩展了这个问题,即如何获得行,列和值的所有匹配值?

下面是解决方案:

import pandas as pd
import numpy as np


def search_coordinate(df_data: pd.DataFrame, search_set: set) -> list:
    nda_values = df_data.values
    tuple_index = np.where(np.isin(nda_values, [e for e in search_set]))
    return [(row, col, nda_values[row][col]) for row, col in zip(tuple_index[0], tuple_index[1])]


if __name__ == '__main__':
    test_datas = [['cat', 'dog', ''],
                  ['goldfish', '', 'kitten'],
                  ['Puppy', 'hamster', 'mouse']
                  ]
    df_data = pd.DataFrame(test_datas)
    print(df_data)
    result_list = search_coordinate(df_data, {'dog', 'Puppy'})
    print(f"\n\n{'row':<4} {'col':<4} {'name':>10}")
    [print(f"{row:<4} {col:<4} {name:>10}") for row, col, name in result_list]

输出:

          0        1       2
0       cat      dog        
1  goldfish           kitten
2     Puppy  hamster   mouse


row  col        name
0    1           dog
2    0         Puppy