众所周知,由于舍入和精度问题,比较浮点数是否相等有点棘手。

例如:比较浮点数,2012版

在Python中处理这个问题的推荐方法是什么?

有标准的库函数吗?


当前回答

I'm not aware of anything in the Python standard library (or elsewhere) that implements Dawson's AlmostEqual2sComplement function. If that's the sort of behaviour you want, you'll have to implement it yourself. (In which case, rather than using Dawson's clever bitwise hacks you'd probably do better to use more conventional tests of the form if abs(a-b) <= eps1*(abs(a)+abs(b)) + eps2 or similar. To get Dawson-like behaviour you might say something like if abs(a-b) <= eps*max(EPS,abs(a),abs(b)) for some small fixed EPS; this isn't exactly the same as Dawson, but it's similar in spirit.

其他回答

使用Python的decimal模块,该模块提供decimal类。

评论如下:

值得注意的是,如果你 做繁重的数学工作,而你没有 绝对需要精准的 小数,这很麻烦 下来。浮点数要快得多 处理,但不精确。小数是 非常精确但很慢。

至于绝对误差,你可以检查一下

if abs(a - b) <= error:
    print("Almost equal")

一些关于Python中浮动行为怪异的信息: Python 3教程03 - if-else,逻辑运算符和初学者常犯的错误

你也可以用数学。相对误差接近。

I'm not aware of anything in the Python standard library (or elsewhere) that implements Dawson's AlmostEqual2sComplement function. If that's the sort of behaviour you want, you'll have to implement it yourself. (In which case, rather than using Dawson's clever bitwise hacks you'd probably do better to use more conventional tests of the form if abs(a-b) <= eps1*(abs(a)+abs(b)) + eps2 or similar. To get Dawson-like behaviour you might say something like if abs(a-b) <= eps*max(EPS,abs(a),abs(b)) for some small fixed EPS; this isn't exactly the same as Dawson, but it's similar in spirit.

做一些像下面这样简单的事情就足够了:

return abs(f1 - f2) <= allowed_error

这对于你想要确保两个数字是相同的“达到精度”的情况很有用,并且不需要指定公差:

求这两个数的最小精度 将两者舍入到最小精度并进行比较

def isclose(a, b):
    astr = str(a)
    aprec = len(astr.split('.')[1]) if '.' in astr else 0
    bstr = str(b)
    bprec = len(bstr.split('.')[1]) if '.' in bstr else 0
    prec = min(aprec, bprec)
    return round(a, prec) == round(b, prec)

如上所述,它只适用于字符串表示中没有'e'的数字(意思是0.999999999999995e -4 < number <= 0.99999999999999995e11)

例子:

>>> isclose(10.0, 10.049)
True
>>> isclose(10.0, 10.05)
False