我正在尝试我的第一个正式的python程序使用线程和多处理在windows机器上。但是我无法启动进程,python给出以下消息。问题是,我没有在主模块中启动线程。线程在类中的单独模块中处理。

编辑:顺便说一下,这段代码在ubuntu上运行良好。不完全是在窗户上

RuntimeError: 
            Attempt to start a new process before the current process
            has finished its bootstrapping phase.
            This probably means that you are on Windows and you have
            forgotten to use the proper idiom in the main module:
                if __name__ == '__main__':
                    freeze_support()
                    ...
            The "freeze_support()" line can be omitted if the program
            is not going to be frozen to produce a Windows executable.

我的原始代码相当长,但我能够在代码的删节版本中重现错误。它分为两个文件,第一个是主模块,除了导入处理进程/线程和调用方法的模块外,它做的很少。第二个模块是代码的主要部分。


testMain.py:

import parallelTestModule

extractor = parallelTestModule.ParallelExtractor()
extractor.runInParallel(numProcesses=2, numThreads=4)

parallelTestModule.py:

import multiprocessing
from multiprocessing import Process
import threading

class ThreadRunner(threading.Thread):
    """ This class represents a single instance of a running thread"""
    def __init__(self, name):
        threading.Thread.__init__(self)
        self.name = name
    def run(self):
        print self.name,'\n'

class ProcessRunner:
    """ This class represents a single instance of a running process """
    def runp(self, pid, numThreads):
        mythreads = []
        for tid in range(numThreads):
            name = "Proc-"+str(pid)+"-Thread-"+str(tid)
            th = ThreadRunner(name)
            mythreads.append(th) 
        for i in mythreads:
            i.start()
        for i in mythreads:
            i.join()

class ParallelExtractor:    
    def runInParallel(self, numProcesses, numThreads):
        myprocs = []
        prunner = ProcessRunner()
        for pid in range(numProcesses):
            pr = Process(target=prunner.runp, args=(pid, numThreads)) 
            myprocs.append(pr) 
#        if __name__ == 'parallelTestModule':    #This didnt work
#        if __name__ == '__main__':              #This obviously doesnt work
#        multiprocessing.freeze_support()        #added after seeing error to no avail
        for i in myprocs:
            i.start()

        for i in myprocs:
            i.join()

当前回答

在Windows上,子进程将在启动时导入(即执行)主模块。你需要在主模块中插入一个if __name__ == '__main__':守卫,以避免递归地创建子进程。

修改testMain.py:

import parallelTestModule

if __name__ == '__main__':    
    extractor = parallelTestModule.ParallelExtractor()
    extractor.runInParallel(numProcesses=2, numThreads=4)

其他回答

下面的解决方案应该适用于python multiprocessing和pytorch multiprocessing。

正如其他答案提到的修复是有if __name__ == '__main__':但我在确定从哪里开始时遇到了几个问题,因为我正在使用几个脚本和模块。当我可以在main内部调用我的第一个函数时,然后在它开始创建多个进程之前的一切(不确定为什么)。

将它放在第一行(甚至在导入之前)可以工作。只调用第一个函数返回超时错误。下面是我的代码和multiprocessing的第一个文件调用几个函数后使用,但把主要放在第一个似乎是这里唯一的修复。

if __name__ == '__main__':
    from mjrl.utils.gym_env import GymEnv
    from mjrl.policies.gaussian_mlp import MLP
    from mjrl.baselines.quadratic_baseline import QuadraticBaseline
    from mjrl.baselines.mlp_baseline import MLPBaseline
    from mjrl.algos.npg_cg import NPG
    from mjrl.algos.dapg import DAPG
    from mjrl.algos.behavior_cloning import BC
    from mjrl.utils.train_agent import train_agent
    from mjrl.samplers.core import sample_paths
    import os
    import json
    import mjrl.envs
    import mj_envs
    import time as timer
    import pickle
    import argparse

    import numpy as np 

    # ===============================================================================
    # Get command line arguments
    # ===============================================================================

    parser = argparse.ArgumentParser(description='Policy gradient algorithms with demonstration data.')
    parser.add_argument('--output', type=str, required=True, help='location to store results')
    parser.add_argument('--config', type=str, required=True, help='path to config file with exp params')
    args = parser.parse_args()
    JOB_DIR = args.output
    if not os.path.exists(JOB_DIR):
        os.mkdir(JOB_DIR)
    with open(args.config, 'r') as f:
        job_data = eval(f.read())
    assert 'algorithm' in job_data.keys()
    assert any([job_data['algorithm'] == a for a in ['NPG', 'BCRL', 'DAPG']])
    job_data['lam_0'] = 0.0 if 'lam_0' not in job_data.keys() else job_data['lam_0']
    job_data['lam_1'] = 0.0 if 'lam_1' not in job_data.keys() else job_data['lam_1']
    EXP_FILE = JOB_DIR + '/job_config.json'
    with open(EXP_FILE, 'w') as f:
        json.dump(job_data, f, indent=4)

    # ===============================================================================
    # Train Loop
    # ===============================================================================

    e = GymEnv(job_data['env'])
    policy = MLP(e.spec, hidden_sizes=job_data['policy_size'], seed=job_data['seed'])
    baseline = MLPBaseline(e.spec, reg_coef=1e-3, batch_size=job_data['vf_batch_size'],
                           epochs=job_data['vf_epochs'], learn_rate=job_data['vf_learn_rate'])

    # Get demonstration data if necessary and behavior clone
    if job_data['algorithm'] != 'NPG':
        print("========================================")
        print("Collecting expert demonstrations")
        print("========================================")
        demo_paths = pickle.load(open(job_data['demo_file'], 'rb'))

        ########################################################################################
        demo_paths = demo_paths[0:3]
        print (job_data['demo_file'], len(demo_paths))
        for d in range(len(demo_paths)):
            feats = demo_paths[d]['features']
            feats = np.vstack(feats)
            demo_paths[d]['observations'] = feats

        ########################################################################################

        bc_agent = BC(demo_paths, policy=policy, epochs=job_data['bc_epochs'], batch_size=job_data['bc_batch_size'],
                      lr=job_data['bc_learn_rate'], loss_type='MSE', set_transforms=False)

        in_shift, in_scale, out_shift, out_scale = bc_agent.compute_transformations()
        bc_agent.set_transformations(in_shift, in_scale, out_shift, out_scale)
        bc_agent.set_variance_with_data(out_scale)

        ts = timer.time()
        print("========================================")
        print("Running BC with expert demonstrations")
        print("========================================")
        bc_agent.train()
        print("========================================")
        print("BC training complete !!!")
        print("time taken = %f" % (timer.time() - ts))
        print("========================================")

        # if job_data['eval_rollouts'] >= 1:
        #     score = e.evaluate_policy(policy, num_episodes=job_data['eval_rollouts'], mean_action=True)
        #     print("Score with behavior cloning = %f" % score[0][0])

    if job_data['algorithm'] != 'DAPG':
        # We throw away the demo data when training from scratch or fine-tuning with RL without explicit augmentation
        demo_paths = None

    # ===============================================================================
    # RL Loop
    # ===============================================================================

    rl_agent = DAPG(e, policy, baseline, demo_paths,
                    normalized_step_size=job_data['rl_step_size'],
                    lam_0=job_data['lam_0'], lam_1=job_data['lam_1'],
                    seed=job_data['seed'], save_logs=True
                    )

    print("========================================")
    print("Starting reinforcement learning phase")
    print("========================================")


    ts = timer.time()
    train_agent(job_name=JOB_DIR,
                agent=rl_agent,
                seed=job_data['seed'],
                niter=job_data['rl_num_iter'],
                gamma=job_data['rl_gamma'],
                gae_lambda=job_data['rl_gae'],
                num_cpu=job_data['num_cpu'],
                sample_mode='trajectories',
                num_traj=job_data['rl_num_traj'],
                num_samples= job_data['rl_num_samples'],
                save_freq=job_data['save_freq'],
                evaluation_rollouts=job_data['eval_rollouts'])
    print("time taken = %f" % (timer.time()-ts))

在yolo v5中使用python 3.8.5

if __name__ == '__main__':
    from yolov5 import train
    train.run()

我在下面这段非常简单的代码中尝试了上面提到的技巧。但我仍然无法阻止它在任何使用Python 3.8/3.10的windows机器上重置。如果你能告诉我哪里错了,我将非常感激。

print('script reset')

def do_something(inp):
    print('Done!')

if __name__ == '__main__':
    from multiprocessing import Process, get_start_method
    print('main reset')
    print(get_start_method())
    Process(target=do_something, args=[1]).start()
    print('Finished')

输出显示:

script reset
main reset
spawn
Finished
script reset
Done!

更新:

据我所知,你们并没有阻止包含__main__或.start()的脚本重置(这在Linux中不会发生),而是建议解决方案,这样我们就不会看到重置。我们必须尽量减少所有的导入,并将它们分别放在每个函数中,但相对于Linux,它仍然很慢。

正如@Ofer所说,当你使用其他库或模块时,你应该在if __name__ == '__main__'中导入它们:

所以,在我的例子中,结尾是这样的:

if __name__ == '__main__':       
    import librosa
    import os
    import pandas as pd
    run_my_program()

我也遇到了同样的问题。@ofter方法是正确的,因为有一些细节需要注意。以下是我修改成功的调试代码,请参考:


if __name__ == '__main__':
    import matplotlib.pyplot as plt
    import numpy as np
    def imgshow(img):
        img = img / 2 + 0.5
        np_img = img.numpy()
        plt.imshow(np.transpose(np_img, (1, 2, 0)))
        plt.show()

    dataiter = iter(train_loader)
    images, labels = dataiter.next()

    imgshow(torchvision.utils.make_grid(images))
    print(' '.join('%5s' % classes[labels[i]] for i in range(4)))

声明一下,我没有子程序,我只有一个主程序,但我遇到了和你一样的问题。这表明当在程序段中间导入Python库文件时,我们应该添加:

if __name__ == '__main__':