我需要比较两个列表,以便创建一个在一个列表中找到而在另一个列表中没有的特定元素的新列表。例如:
main_list=[]
list_1=["a", "b", "c", "d", "e"]
list_2=["a", "f", "c", "m"]
我想循环遍历list_1,并将list_2中没有在list_1中找到的所有元素附加到main_list。
结果应该是:
main_list=["f", "m"]
我怎么用python来做呢?
我需要比较两个列表,以便创建一个在一个列表中找到而在另一个列表中没有的特定元素的新列表。例如:
main_list=[]
list_1=["a", "b", "c", "d", "e"]
list_2=["a", "f", "c", "m"]
我想循环遍历list_1,并将list_2中没有在list_1中找到的所有元素附加到main_list。
结果应该是:
main_list=["f", "m"]
我怎么用python来做呢?
你可以使用集合:
main_list = list(set(list_2) - set(list_1))
输出:
>>> list_1=["a", "b", "c", "d", "e"]
>>> list_2=["a", "f", "c", "m"]
>>> set(list_2) - set(list_1)
set(['m', 'f'])
>>> list(set(list_2) - set(list_1))
['m', 'f']
根据@JonClements的评论,这里是一个更整洁的版本:
>>> list_1=["a", "b", "c", "d", "e"]
>>> list_2=["a", "f", "c", "m"]
>>> list(set(list_2).difference(list_1))
['m', 'f']
使用这样的列表理解:
main_list = [item for item in list_2 if item not in list_1]
输出:
>>> list_1 = ["a", "b", "c", "d", "e"]
>>> list_2 = ["a", "f", "c", "m"]
>>>
>>> main_list = [item for item in list_2 if item not in list_1]
>>> main_list
['f', 'm']
编辑:
就像下面评论中提到的,对于大列表,上面不是理想的解决方案。在这种情况下,更好的选择是先将list_1转换为set:
set_1 = set(list_1) # this reduces the lookup time from O(n) to O(1)
main_list = [item for item in list_2 if item not in set_1]
main_list=[]
list_1=["a", "b", "c", "d", "e"]
list_2=["a", "f", "c", "m"]
for i in list_2:
if i not in list_1:
main_list.append(i)
print(main_list)
输出:
['f', 'm']
如果要考虑出现的次数,则可能需要使用集合之类的方法。计数器:
list_1=["a", "b", "c", "d", "e"]
list_2=["a", "f", "c", "m"]
from collections import Counter
cnt1 = Counter(list_1)
cnt2 = Counter(list_2)
final = [key for key, counts in cnt2.items() if cnt1[key] != counts]
>>> final
['f', 'm']
如前所述,这也可以处理不同数量的事件作为“差异”:
list_1=["a", "b", "c", "d", "e", 'a']
cnt1 = Counter(list_1)
cnt2 = Counter(list_2)
final = [key for key, counts in cnt2.items() if cnt1[key] != counts]
>>> final
['a', 'f', 'm']
如果你想要一个一行程序解决方案(忽略导入),对于长度为n和m的输入只需要O(max(n, m))的工作,而不是O(n * m)的工作,你可以使用itertools模块:
from itertools import filterfalse
main_list = list(filterfalse(set(list_1).__contains__, list_2))
这利用了函数函数在构造时接受回调函数的优点,允许它只创建一次回调函数,并为每个元素重用它,而不需要将它存储在某个地方(因为filterfalse将它存储在内部);列表推导式和生成器表达式可以做到这一点,但它很难看
在一行中得到相同的结果:
main_list = [x for x in list_2 if x not in list_1]
速度:
set_1 = set(list_1)
main_list = [x for x in list_2 if x not in set_1]
当然,如果比较的目的是位置,那么:
list_1 = [1, 2, 3]
list_2 = [2, 3, 4]
应该生产:
main_list = [2, 3, 4]
(因为list_2中没有值在list_1中相同的索引处有匹配),您肯定应该选择Patrick的答案,它不涉及临时列表或集(即使集大致为O(1),它们每次检查的“常量”系数比简单的相等检查高),并且涉及O(min(n, m))工作,比任何其他答案都少,如果您的问题是位置敏感的,则当匹配元素出现在不匹配的偏移处时,是唯一正确的解决方案。
†:将列表理解作为单行程序来做同样的事情的方法是滥用嵌套循环来创建和缓存“最外层”循环中的值,例如:
main_list = [x for set_1 in (set(list_1),) for x in list_2 if x not in set_1]
这也给Python 3带来了轻微的性能好处(因为现在set_1在理解代码中是本地范围,而不是每次检查都从嵌套范围中查找;在Python 2上,这并不重要,因为Python 2不使用闭包进行列表推导;它们在相同的范围内运行)。
TL;博士: 解决方案(1)
import numpy as np
main_list = np.setdiff1d(list_2,list_1)
# yields the elements in `list_2` that are NOT in `list_1`
解决方案(2)你想要一个排序的列表
def setdiff_sorted(array1,array2,assume_unique=False):
ans = np.setdiff1d(array1,array2,assume_unique).tolist()
if assume_unique:
return sorted(ans)
return ans
main_list = setdiff_sorted(list_2,list_1)
解释: (1)可以使用NumPy的setdiff1d (array1,array2,assume_unique=False)。
assume_unique询问用户数组是否已经是唯一的。如果为False,则首先确定唯一元素。 如果为True,函数将假设元素已经是唯一的,并且函数将跳过确定唯一元素。
这将产生array1中不在array2中的唯一值。assume_unique默认为False。
如果你关心的是唯一元素(基于Chinny84的响应),那么只需使用(其中assume_unique=False =>为默认值):
import numpy as np
list_1 = ["a", "b", "c", "d", "e"]
list_2 = ["a", "f", "c", "m"]
main_list = np.setdiff1d(list_2,list_1)
# yields the elements in `list_2` that are NOT in `list_1`
(2) 对于那些想要对答案进行排序的人,我已经做了一个自定义函数:
import numpy as np
def setdiff_sorted(array1,array2,assume_unique=False):
ans = np.setdiff1d(array1,array2,assume_unique).tolist()
if assume_unique:
return sorted(ans)
return ans
要得到答案,运行:
main_list = setdiff_sorted(list_2,list_1)
SIDE NOTES: (a) Solution 2 (custom function setdiff_sorted) returns a list (compared to an array in solution 1). (b) If you aren't sure if the elements are unique, just use the default setting of NumPy's setdiff1d in both solutions A and B. What can be an example of a complication? See note (c). (c) Things will be different if either of the two lists is not unique. Say list_2 is not unique: list2 = ["a", "f", "c", "m", "m"]. Keep list1 as is: list_1 = ["a", "b", "c", "d", "e"] Setting the default value of assume_unique yields ["f", "m"] (in both solutions). HOWEVER, if you set assume_unique=True, both solutions give ["f", "m", "m"]. Why? This is because the user ASSUMED that the elements are unique). Hence, IT IS BETTER TO KEEP assume_unique to its default value. Note that both answers are sorted.
pythonnumpy
从ser1中删除ser2中的条目。
输入
1 = pd。系列([1、2、3、4、5]) ser2 = pd。系列([4、5、6、7、8])
解决方案
ser1[~ser1.isin(ser2)]
我用了两种方法,我发现其中一种方法比另一种更有用。以下是我的回答:
我的输入数据:
crkmod_mpp = ['M13','M18','M19','M24']
testmod_mpp = ['M13','M14','M15','M16','M17','M18','M19','M20','M21','M22','M23','M24']
Method1: np。我喜欢这种方法,因为它保留了位置
test= list(np.setdiff1d(testmod_mpp,crkmod_mpp))
print(test)
['M15', 'M16', 'M22', 'M23', 'M20', 'M14', 'M17', 'M21']
Method2:虽然答案和Method1一样,但是打乱了顺序
test = list(set(testmod_mpp).difference(set(crkmod_mpp)))
print(test)
['POA23', 'POA15', 'POA17', 'POA16', 'POA22', 'POA18', 'POA24', 'POA21']
Method1 np。Setdiff1d完全符合我的要求。 这是信息的答案。