我有一个这样的字典:di = {1: " a ", 2: "B"}
我想把它应用到一个类似于数据框架的col1列:
col1 col2
0 w a
1 1 2
2 2 NaN
得到:
col1 col2
0 w a
1 A 2
2 B NaN
我怎样才能做到最好呢?出于某种原因,谷歌与此相关的术语只向我展示了如何从字典中制作列,反之亦然:-/
你可以用数据帧中缺失的对来更新你的映射字典。例如:
df = pd.DataFrame({'col1': ['a', 'b', 'c', 'd', np.nan]})
map_ = {'a': 'A', 'b': 'B', 'd': np.nan}
# Get mapping from df
uniques = df['col1'].unique()
map_new = dict(zip(uniques, uniques))
# {'a': 'a', 'b': 'b', 'c': 'c', 'd': 'd', nan: nan}
# Update mapping
map_new.update(map_)
# {'a': 'A', 'b': 'B', 'c': 'c', 'd': nan, nan: nan}
df['col2'] = df['col1'].map(dct_map_new)
结果:
col1 col2
0 a A
1 b B
2 c c
3 d NaN
4 NaN NaN
DSM有一个公认的答案,但编码似乎并不适用于每个人。下面是一个适用于当前版本的熊猫(截至2018年8月的0.23.4):
import pandas as pd
df = pd.DataFrame({'col1': [1, 2, 2, 3, 1],
'col2': ['negative', 'positive', 'neutral', 'neutral', 'positive']})
conversion_dict = {'negative': -1, 'neutral': 0, 'positive': 1}
df['converted_column'] = df['col2'].replace(conversion_dict)
print(df.head())
你会看到它是这样的:
col1 col2 converted_column
0 1 negative -1
1 2 positive 1
2 2 neutral 0
3 3 neutral 0
4 1 positive 1
pandas.DataFrame.replace的文档在这里。
映射可以比替换快得多
如果您的字典有多个键,使用map可能比replace快得多。这种方法有两个版本,这取决于你的字典是否穷尽地映射了所有可能的值(以及你是否希望不匹配的值保留它们的值或被转换为nan):
详尽的映射
在本例中,表单非常简单:
df['col1'].map(di) # note: if the dictionary does not exhaustively map all
# entries then non-matched entries are changed to NaNs
尽管map通常以函数作为参数,但它也可以以字典或系列作为参数
简单的映射
如果你有一个非穷尽映射,并且希望保留现有的不匹配的变量,你可以添加fillna:
df['col1'].map(di).fillna(df['col1'])
正如@jpp在这里的回答:通过字典有效地替换pandas系列中的值
基准
在pandas 0.23.1版本中使用以下数据:
di = {1: "A", 2: "B", 3: "C", 4: "D", 5: "E", 6: "F", 7: "G", 8: "H" }
df = pd.DataFrame({ 'col1': np.random.choice( range(1,9), 100000 ) })
使用%timeit进行测试时,map似乎比replace快大约10倍。
请注意,使用map的加速将随着数据的不同而不同。最大的加速似乎是使用大字典和详尽的替换。参见@jpp的回答(上面有链接),了解更广泛的基准测试和讨论。
你可以使用。replace。例如:
>>> df = pd.DataFrame({'col2': {0: 'a', 1: 2, 2: np.nan}, 'col1': {0: 'w', 1: 1, 2: 2}})
>>> di = {1: "A", 2: "B"}
>>> df
col1 col2
0 w a
1 1 2
2 2 NaN
>>> df.replace({"col1": di})
col1 col2
0 w a
1 A 2
2 B NaN
或直接在级数上,即df["col1"]。替换(di,原地= True)。
作为Nico Coallier(应用于多个列)和U10-Forward(使用apply风格的方法)提出的扩展,并将其总结为一行程序,我建议:
df.loc[:,['col1','col2']].transform(lambda x: x.map(lambda x: {1: "A", 2: "B"}.get(x,x))
transform()将每一列作为一个系列处理。与.apply()相反,它传递在DataFrame中聚合的列。
因此,您可以应用Series方法map()。
最后,我发现了这个行为多亏了U10,你可以在.get()表达式中使用整个系列。除非我误解了它的行为,它按顺序处理系列而不是按位处理。
.get(x,x)表示映射字典中没有提到的值,否则.map()方法会将这些值视为Nan