我有一个使用分布式TensorFlow的计划,我看到TensorFlow可以使用gpu进行训练和测试。在集群环境中,每台机器可能有0个或1个或多个gpu,我想在尽可能多的机器上运行我的TensorFlow图。
我发现当运行tf.Session()时,TensorFlow在日志消息中给出了关于GPU的信息,如下所示:
I tensorflow/core/common_runtime/gpu/gpu_init.cc:126] DMA: 0
I tensorflow/core/common_runtime/gpu/gpu_init.cc:136] 0: Y
I tensorflow/core/common_runtime/gpu/gpu_device.cc:838] Creating TensorFlow device (/gpu:0) -> (device: 0, name: GeForce GTX 1080, pci bus id: 0000:01:00.0)
我的问题是如何从TensorFlow获取当前可用GPU的信息?我可以从日志中获得加载的GPU信息,但我想以一种更复杂的编程方式来实现。 我也可以故意使用CUDA_VISIBLE_DEVICES环境变量限制GPU,所以我不想知道从OS内核获取GPU信息的方法。
简而言之,我想要一个函数像tf.get_available_gpu()将返回['/gpu:0', '/gpu:1']如果有两个gpu可用的机器。我如何实现这个?