我在把我的数据帧从宽表转换成长表时遇到了一些麻烦。 目前它看起来是这样的:

Code Country        1950    1951    1952    1953    1954
AFG  Afghanistan    20,249  21,352  22,532  23,557  24,555
ALB  Albania        8,097   8,986   10,058  11,123  12,246

现在我想把这个数据。帧转换成一个长数据。帧。 就像这样:

Code Country        Year    Value
AFG  Afghanistan    1950    20,249
AFG  Afghanistan    1951    21,352
AFG  Afghanistan    1952    22,532
AFG  Afghanistan    1953    23,557
AFG  Afghanistan    1954    24,555
ALB  Albania        1950    8,097
ALB  Albania        1951    8,986
ALB  Albania        1952    10,058
ALB  Albania        1953    11,123
ALB  Albania        1954    12,246

我已经看过并尝试过使用melt()和重塑()函数 就像一些人在类似的问题中暗示的那样。 然而,到目前为止,我只得到混乱的结果。

如果可能的话,我想用重塑()函数来做 它看起来更好处理一些。


当前回答

对于tidyr_1.0.0,另一个选项是pivot_longer

library(tidyr)
pivot_longer(df1, -c(Code, Country), values_to = "Value", names_to = "Year")
# A tibble: 10 x 4
#   Code  Country     Year  Value 
#   <fct> <fct>       <chr> <fct> 
# 1 AFG   Afghanistan 1950  20,249
# 2 AFG   Afghanistan 1951  21,352
# 3 AFG   Afghanistan 1952  22,532
# 4 AFG   Afghanistan 1953  23,557
# 5 AFG   Afghanistan 1954  24,555
# 6 ALB   Albania     1950  8,097 
# 7 ALB   Albania     1951  8,986 
# 8 ALB   Albania     1952  10,058
# 9 ALB   Albania     1953  11,123
#10 ALB   Albania     1954  12,246

data

df1 <- structure(list(Code = structure(1:2, .Label = c("AFG", "ALB"), class = "factor"), 
    Country = structure(1:2, .Label = c("Afghanistan", "Albania"
    ), class = "factor"), `1950` = structure(1:2, .Label = c("20,249", 
    "8,097"), class = "factor"), `1951` = structure(1:2, .Label = c("21,352", 
    "8,986"), class = "factor"), `1952` = structure(2:1, .Label = c("10,058", 
    "22,532"), class = "factor"), `1953` = structure(2:1, .Label = c("11,123", 
    "23,557"), class = "factor"), `1954` = structure(2:1, .Label = c("12,246", 
    "24,555"), class = "factor")), class = "data.frame", row.names = c(NA, 
-2L))

其他回答

下面是另一个展示使用tidyr中的gather的示例。您可以通过单独删除列来选择要收集的列(就像我在这里所做的那样),或者通过显式地包括您想要的年份来选择列。

注意,为了处理逗号(如果没有设置check.names = FALSE,则添加X),我还使用dplyr的mutate with parse_number from readr将文本值转换回数字。这些都是tidyverse的一部分,因此可以通过库(tidyverse)一起加载。

wide %>%
  gather(Year, Value, -Code, -Country) %>%
  mutate(Year = parse_number(Year)
         , Value = parse_number(Value))

返回:

   Code     Country Year Value
1   AFG Afghanistan 1950 20249
2   ALB     Albania 1950  8097
3   AFG Afghanistan 1951 21352
4   ALB     Albania 1951  8986
5   AFG Afghanistan 1952 22532
6   ALB     Albania 1952 10058
7   AFG Afghanistan 1953 23557
8   ALB     Albania 1953 11123
9   AFG Afghanistan 1954 24555
10  ALB     Albania 1954 12246

使用重塑包:

#data
x <- read.table(textConnection(
"Code Country        1950    1951    1952    1953    1954
AFG  Afghanistan    20,249  21,352  22,532  23,557  24,555
ALB  Albania        8,097   8,986   10,058  11,123  12,246"), header=TRUE)

library(reshape)

x2 <- melt(x, id = c("Code", "Country"), variable_name = "Year")
x2[,"Year"] <- as.numeric(gsub("X", "" , x2[,"Year"]))

由于这个答案被标记为R -faq,我觉得分享另一个来自基本R: stack的选项会很有用。

但是请注意,该堆栈不能与因子一起工作——只有在is时才能工作。vector为TRUE,从文档中可以看到is。向量,我们发现:

是多少。vector返回TRUE,如果x是指定模式的vector,除名称外没有其他属性。否则返回FALSE。

我使用来自@Jaap答案的示例数据,其中年份列中的值是因子。

下面是堆栈方法:

cbind(wide[1:2], stack(lapply(wide[-c(1, 2)], as.character)))
##    Code     Country values  ind
## 1   AFG Afghanistan 20,249 1950
## 2   ALB     Albania  8,097 1950
## 3   AFG Afghanistan 21,352 1951
## 4   ALB     Albania  8,986 1951
## 5   AFG Afghanistan 22,532 1952
## 6   ALB     Albania 10,058 1952
## 7   AFG Afghanistan 23,557 1953
## 8   ALB     Albania 11,123 1953
## 9   AFG Afghanistan 24,555 1954
## 10  ALB     Albania 12,246 1954

下面是一个sqldf解决方案:

sqldf("Select Code, Country, '1950' As Year, `1950` As Value From wide
        Union All
       Select Code, Country, '1951' As Year, `1951` As Value From wide
        Union All
       Select Code, Country, '1952' As Year, `1952` As Value From wide
        Union All
       Select Code, Country, '1953' As Year, `1953` As Value From wide
        Union All
       Select Code, Country, '1954' As Year, `1954` As Value From wide;")

要在不输入所有内容的情况下进行查询,您可以使用以下命令:

感谢G. Grothendieck的实施。

ValCol <- tail(names(wide), -2)

s <- sprintf("Select Code, Country, '%s' As Year, `%s` As Value from wide", ValCol, ValCol)
mquery <- paste(s, collapse = "\n Union All\n")

cat(mquery) #just to show the query
 #> Select Code, Country, '1950' As Year, `1950` As Value from wide
 #>  Union All
 #> Select Code, Country, '1951' As Year, `1951` As Value from wide
 #>  Union All
 #> Select Code, Country, '1952' As Year, `1952` As Value from wide
 #>  Union All
 #> Select Code, Country, '1953' As Year, `1953` As Value from wide
 #>  Union All
 #> Select Code, Country, '1954' As Year, `1954` As Value from wide

sqldf(mquery)
 #>    Code     Country Year  Value
 #> 1   AFG Afghanistan 1950 20,249
 #> 2   ALB     Albania 1950  8,097
 #> 3   AFG Afghanistan 1951 21,352
 #> 4   ALB     Albania 1951  8,986
 #> 5   AFG Afghanistan 1952 22,532
 #> 6   ALB     Albania 1952 10,058
 #> 7   AFG Afghanistan 1953 23,557
 #> 8   ALB     Albania 1953 11,123
 #> 9   AFG Afghanistan 1954 24,555
 #> 10  ALB     Albania 1954 12,246

不幸的是,我不认为PIVOT和UNPIVOT适用于R SQLite。如果你想以一种更复杂的方式写你的查询,你也可以看看这些帖子:

使用sprintf编写sql查询 将变量传递给sqldf

对于tidyr_1.0.0,另一个选项是pivot_longer

library(tidyr)
pivot_longer(df1, -c(Code, Country), values_to = "Value", names_to = "Year")
# A tibble: 10 x 4
#   Code  Country     Year  Value 
#   <fct> <fct>       <chr> <fct> 
# 1 AFG   Afghanistan 1950  20,249
# 2 AFG   Afghanistan 1951  21,352
# 3 AFG   Afghanistan 1952  22,532
# 4 AFG   Afghanistan 1953  23,557
# 5 AFG   Afghanistan 1954  24,555
# 6 ALB   Albania     1950  8,097 
# 7 ALB   Albania     1951  8,986 
# 8 ALB   Albania     1952  10,058
# 9 ALB   Albania     1953  11,123
#10 ALB   Albania     1954  12,246

data

df1 <- structure(list(Code = structure(1:2, .Label = c("AFG", "ALB"), class = "factor"), 
    Country = structure(1:2, .Label = c("Afghanistan", "Albania"
    ), class = "factor"), `1950` = structure(1:2, .Label = c("20,249", 
    "8,097"), class = "factor"), `1951` = structure(1:2, .Label = c("21,352", 
    "8,986"), class = "factor"), `1952` = structure(2:1, .Label = c("10,058", 
    "22,532"), class = "factor"), `1953` = structure(2:1, .Label = c("11,123", 
    "23,557"), class = "factor"), `1954` = structure(2:1, .Label = c("12,246", 
    "24,555"), class = "factor")), class = "data.frame", row.names = c(NA, 
-2L))