我想取表格的数据

before = data.frame(attr = c(1,30,4,6), type=c('foo_and_bar','foo_and_bar_2'))
  attr          type
1    1   foo_and_bar
2   30 foo_and_bar_2
3    4   foo_and_bar
4    6 foo_and_bar_2

然后在上面的列"type"上使用split(),得到如下内容:

  attr type_1 type_2
1    1    foo    bar
2   30    foo  bar_2
3    4    foo    bar
4    6    foo  bar_2

我想出了一些难以置信的复杂的东西,涉及到某种形式的应用,但我后来把它放错了地方。这似乎太复杂了,不是最好的办法。我可以使用strsplit如下所示,但不清楚如何将其返回到数据帧中的2列。

> strsplit(as.character(before$type),'_and_')
[[1]]
[1] "foo" "bar"

[[2]]
[1] "foo"   "bar_2"

[[3]]
[1] "foo" "bar"

[[4]]
[1] "foo"   "bar_2"

谢谢你的指点。我还没完全弄懂R列表。


当前回答

另一个选择是使用新的tidyr包。

library(dplyr)
library(tidyr)

before <- data.frame(
  attr = c(1, 30 ,4 ,6 ), 
  type = c('foo_and_bar', 'foo_and_bar_2')
)

before %>%
  separate(type, c("foo", "bar"), "_and_")

##   attr foo   bar
## 1    1 foo   bar
## 2   30 foo bar_2
## 3    4 foo   bar
## 4    6 foo bar_2

其他回答

令人惊讶的是,另一个tidyverse解决方案仍然缺失——您也可以使用带有正则表达式的tidyr::extract。

library(tidyr)
before <- data.frame(attr = c(1, 30, 4, 6), type = c("foo_and_bar", "foo_and_bar_2"))

## regex - getting all characters except an underscore till the first underscore, 
## inspired by Akrun https://stackoverflow.com/a/49752920/7941188 

extract(before, col = type, into = paste0("type", 1:2), regex = "(^[^_]*)_(.*)")
#>   attr type1     type2
#> 1    1   foo   and_bar
#> 2   30   foo and_bar_2
#> 3    4   foo   and_bar
#> 4    6   foo and_bar_2

这是另一个R基溶液。我们可以用read。但由于它只接受一个字节的sep参数,这里我们有多字节分隔符,我们可以使用gsub将多字节分隔符替换为任何一个字节分隔符,并将其作为read.table中的sep参数

cbind(before[1], read.table(text = gsub('_and_', '\t', before$type), 
                 sep = "\t", col.names = paste0("type_", 1:2)))

#  attr type_1 type_2
#1    1    foo    bar
#2   30    foo  bar_2
#3    4    foo    bar
#4    6    foo  bar_2

在这种情况下,我们也可以用默认的sep参数替换它,这样我们就不必显式地提到它,从而使它更短

cbind(before[1], read.table(text = gsub('_and_', ' ', before$type), 
                 col.names = paste0("type_", 1:2)))

注意,带“[”的spapply可以用来提取这些列表中的第一项或第二项,如下所示:

before$type_1 <- sapply(strsplit(as.character(before$type),'_and_'), "[", 1)
before$type_2 <- sapply(strsplit(as.character(before$type),'_and_'), "[", 2)
before$type <- NULL

这是一个gsub方法:

before$type_1 <- gsub("_and_.+$", "", before$type)
before$type_2 <- gsub("^.+_and_", "", before$type)
before$type <- NULL

下面是一个基于rone的行程序,它与之前的一些解决方案重叠,但返回一个具有正确名称的data.frame。

out <- setNames(data.frame(before$attr,
                  do.call(rbind, strsplit(as.character(before$type),
                                          split="_and_"))),
                  c("attr", paste0("type_", 1:2)))
out
  attr type_1 type_2
1    1    foo    bar
2   30    foo  bar_2
3    4    foo    bar
4    6    foo  bar_2

它使用strsplit来分解变量,data.frame使用do。调用/rbind将数据放回data.frame中。额外的增量改进是使用setNames向data.frame添加变量名。

还有另一种方法:使用rbind on out:

before <- data.frame(attr = c(1,30,4,6), type=c('foo_and_bar','foo_and_bar_2'))  
out <- strsplit(as.character(before$type),'_and_') 
do.call(rbind, out)

     [,1]  [,2]   
[1,] "foo" "bar"  
[2,] "foo" "bar_2"
[3,] "foo" "bar"  
[4,] "foo" "bar_2"

并结合:

data.frame(before$attr, do.call(rbind, out))