给定一个无序的值列表,比如

a = [5, 1, 2, 2, 4, 3, 1, 2, 3, 1, 1, 5, 2]

我怎样才能得到出现在列表中的每个值的频率,就像这样?

# `a` has 4 instances of `1`, 4 of `2`, 2 of `3`, 1 of `4,` 2 of `5`
b = [4, 4, 2, 1, 2] # expected output

当前回答

我将简单地以以下方式使用scipy.stats.itemfreq:

from scipy.stats import itemfreq

a = [1,1,1,1,2,2,2,2,3,3,4,5,5]

freq = itemfreq(a)

a = freq[:,0]
b = freq[:,1]

您可以在这里查看文档:http://docs.scipy.org/doc/scipy-0.16.0/reference/generated/scipy.stats.itemfreq.html

其他回答

我使用计数器在1行代码中从文本文件单词生成一个frequency . dict

def _fileIndex(fh):
''' create a dict using Counter of a
flat list of words (re.findall(re.compile(r"[a-zA-Z]+"), lines)) in (lines in file->for lines in fh)
'''
return Counter(
    [wrd.lower() for wrdList in
     [words for words in
      [re.findall(re.compile(r'[a-zA-Z]+'), lines) for lines in fh]]
     for wrd in wrdList])

在Python 2.7(或更新版本)中,可以使用集合。计数器:

>>> import collections
>>> a = [5, 1, 2, 2, 4, 3, 1, 2, 3, 1, 1, 5, 2]
>>> counter = collections.Counter(a)
>>> counter
Counter({1: 4, 2: 4, 5: 2, 3: 2, 4: 1})
>>> counter.values()
dict_values([2, 4, 4, 1, 2])
>>> counter.keys()
dict_keys([5, 1, 2, 4, 3])
>>> counter.most_common(3)
[(1, 4), (2, 4), (5, 2)]
>>> dict(counter)
{5: 2, 1: 4, 2: 4, 4: 1, 3: 2}
>>> # Get the counts in order matching the original specification,
>>> # by iterating over keys in sorted order
>>> [counter[x] for x in sorted(counter.keys())]
[4, 4, 2, 1, 2]

如果您使用的是Python 2.6或更老版本,可以在这里下载实现。

seta = set(a)
b = [a.count(el) for el in seta]
a = list(seta) #Only if you really want it.

郑重声明,一个实用的答案:

>>> L = [1,1,1,1,2,2,2,2,3,3,4,5,5]
>>> import functools
>>> >>> functools.reduce(lambda acc, e: [v+(i==e) for i, v in enumerate(acc,1)] if e<=len(acc) else acc+[0 for _ in range(e-len(acc)-1)]+[1], L, [])
[4, 4, 2, 1, 2]

如果你把0也算进去,那就更简洁了:

>>> functools.reduce(lambda acc, e: [v+(i==e) for i, v in enumerate(acc)] if e<len(acc) else acc+[0 for _ in range(e-len(acc))]+[1], L, [])
[0, 4, 4, 2, 1, 2]

一个解释:

我们从一个空的acc列表开始; 如果L的下一个元素e小于acc的大小,我们只需更新这个元素:如果acc的索引i是当前元素e,则v+(i==e)表示v+1,否则为之前的值v; 如果L的下一个元素e大于或等于acc的大小,我们必须展开acc以容纳新的1。

元素不必排序(itertools.groupby)。如果是负数,结果会很奇怪。

num=[3,2,3,5,5,3,7,6,4,6,7,2]
print ('\nelements are:\t',num)
count_dict={}
for elements in num:
    count_dict[elements]=num.count(elements)
print ('\nfrequency:\t',count_dict)