我已经使用pandas操纵了一些数据,现在我想进行批量保存回数据库。这需要我将数据帧转换为一个元组数组,每个元组对应于数据帧的“行”。

我的数据帧看起来像这样:

In [182]: data_set
Out[182]: 
  index data_date   data_1  data_2
0  14303 2012-02-17  24.75   25.03 
1  12009 2012-02-16  25.00   25.07 
2  11830 2012-02-15  24.99   25.15 
3  6274  2012-02-14  24.68   25.05 
4  2302  2012-02-13  24.62   24.77 
5  14085 2012-02-10  24.38   24.61 

我想把它转换成一个元组数组,就像:

[(datetime.date(2012,2,17),24.75,25.03),
(datetime.date(2012,2,16),25.00,25.07),
...etc. ]

有什么建议吗?


当前回答

如何:

subset = data_set[['data_date', 'data_1', 'data_2']]
tuples = [tuple(x) for x in subset.to_numpy()]

对于熊猫< 0.24使用

tuples = [tuple(x) for x in subset.values]

其他回答

如何:

subset = data_set[['data_date', 'data_1', 'data_2']]
tuples = [tuple(x) for x in subset.to_numpy()]

对于熊猫< 0.24使用

tuples = [tuple(x) for x in subset.values]

一般的方法:

[tuple(x) for x in data_set.to_records(index=False)]
#try this one:

tuples = list(zip(data_set["data_date"], data_set["data_1"],data_set["data_2"]))
print (tuples)

更python化的方式:

df = data_set[['data_date', 'data_1', 'data_2']]
map(tuple,df.values)

最有效和最简单的方法:

list(data_set.to_records())

您可以在此调用之前筛选所需的列。