我试图将一个较长的中空“数据”类转换为命名元组。我的类目前看起来是这样的:
class Node(object):
def __init__(self, val, left=None, right=None):
self.val = val
self.left = left
self.right = right
转换为namedtuple后,它看起来像:
from collections import namedtuple
Node = namedtuple('Node', 'val left right')
但这里有一个问题。我最初的类允许我只传入一个值,并通过为named/keyword参数使用默认值来处理默认值。喜欢的东西:
class BinaryTree(object):
def __init__(self, val):
self.root = Node(val)
但这在重构的命名tuple中不起作用,因为它期望我传递所有字段。我当然可以替换Node(val)到Node(val, None, None)的出现,但这不是我喜欢的。
那么,是否存在一个好技巧,可以让我的重写成功,而不增加大量的代码复杂性(元编程),或者我应该吞下药丸,继续“搜索和替换”?:)
受到这个对另一个问题的回答的启发,下面是我提出的基于元类并使用super(正确处理未来的子类)的解决方案。这和justinfay的答案很相似。
from collections import namedtuple
NodeTuple = namedtuple("NodeTuple", ("val", "left", "right"))
class NodeMeta(type):
def __call__(cls, val, left=None, right=None):
return super(NodeMeta, cls).__call__(val, left, right)
class Node(NodeTuple, metaclass=NodeMeta):
__slots__ = ()
然后:
>>> Node(1, Node(2, Node(4)),(Node(3, None, Node(5))))
Node(val=1, left=Node(val=2, left=Node(val=4, left=None, right=None), right=None), right=Node(val=3, left=None, right=Node(val=5, left=None, right=None)))
一个稍微扩展的例子,用None初始化所有缺失的参数:
from collections import namedtuple
class Node(namedtuple('Node', ['value', 'left', 'right'])):
__slots__ = ()
def __new__(cls, *args, **kwargs):
# initialize missing kwargs with None
all_kwargs = {key: kwargs.get(key) for key in cls._fields}
return super(Node, cls).__new__(cls, *args, **all_kwargs)
结合@Denis和@Mark的方法:
from collections import namedtuple
import inspect
class Node(namedtuple('Node', 'left right val')):
__slots__ = ()
def __new__(cls, *args, **kwargs):
args_list = inspect.getargspec(super(Node, cls).__new__).args[len(args)+1:]
params = {key: kwargs.get(key) for key in args_list + kwargs.keys()}
return super(Node, cls).__new__(cls, *args, **params)
这应该支持使用位置参数和混合情况创建元组。
测试用例:
>>> print Node()
Node(left=None, right=None, val=None)
>>> print Node(1,2,3)
Node(left=1, right=2, val=3)
>>> print Node(1, right=2)
Node(left=1, right=2, val=None)
>>> print Node(1, right=2, val=100)
Node(left=1, right=2, val=100)
>>> print Node(left=1, right=2, val=100)
Node(left=1, right=2, val=100)
>>> print Node(left=1, right=2)
Node(left=1, right=2, val=None)
但也支持TypeError:
>>> Node(1, left=2)
TypeError: __new__() got multiple values for keyword argument 'left'
1. 使用NamedTuple >= Python 3.6
从Python 3.7+开始,您可以从支持默认值的typing模块中使用NamedTuple。
https://docs.python.org/3/library/typing.html#typing.NamedTuple
from typing import NamedTuple
class Employee(NamedTuple):
name: str
id: int = 3
employee = Employee('Guido')
assert employee.id == 3
注意:虽然NamedTuple在类语句中作为超类出现,但它实际上不是。打字。NamedTuple使用元类的高级功能来自定义用户类的创建。
issubclass(Employee, typing.NamedTuple)
# return False
issubclass(Employee, tuple)
# return True
2. 使用数据类>= Python 3.7
from dataclasses import dataclass
@dataclass(frozen=True)
class Employee:
name: str
id: int = 3
employee = Employee('Guido')
assert employee.id == 3
frozen=True使数据类不可变。
下面是一个简短、简单的通用答案,对于带默认参数的命名元组,它有一个很好的语法:
import collections
def dnamedtuple(typename, field_names, **defaults):
fields = sorted(field_names.split(), key=lambda x: x in defaults)
T = collections.namedtuple(typename, ' '.join(fields))
T.__new__.__defaults__ = tuple(defaults[field] for field in fields[-len(defaults):])
return T
用法:
Test = dnamedtuple('Test', 'one two three', two=2)
Test(1, 3) # Test(one=1, three=3, two=2)
缩小:
def dnamedtuple(tp, fs, **df):
fs = sorted(fs.split(), key=df.__contains__)
T = collections.namedtuple(tp, ' '.join(fs))
T.__new__.__defaults__ = tuple(df[i] for i in fs[-len(df):])
return T