给定两个数据帧:

df1 = data.frame(CustomerId = c(1:6), Product = c(rep("Toaster", 3), rep("Radio", 3)))
df2 = data.frame(CustomerId = c(2, 4, 6), State = c(rep("Alabama", 2), rep("Ohio", 1)))

df1
#  CustomerId Product
#           1 Toaster
#           2 Toaster
#           3 Toaster
#           4   Radio
#           5   Radio
#           6   Radio

df2
#  CustomerId   State
#           2 Alabama
#           4 Alabama
#           6    Ohio

如何进行数据库样式(即sql样式)连接?也就是说,我如何获得:

df1和df2的内部连接:仅返回左表在右表中具有匹配键的行。df1和df2的外部连接:返回两个表中的所有行,连接左侧表中具有匹配键的记录。df1和df2的左外联接(或简单的左联接)返回左表中的所有行,以及右表中具有匹配键的所有行。df1和df2的右外部连接返回右表中的所有行,以及左表中具有匹配键的所有行。


额外学分:

如何执行SQL样式的选择语句?


当前回答

对于所有列上的内部联接,还可以使用data.table-package中的finteract或dplyr包中的intersect作为合并的替代方法,而不指定by列。这将给出两个数据帧之间相等的行:

merge(df1, df2)
#   V1 V2
# 1  B  2
# 2  C  3

dplyr::intersect(df1, df2)
#   V1 V2
# 1  B  2
# 2  C  3

data.table::fintersect(setDT(df1), setDT(df2))
#    V1 V2
# 1:  B  2
# 2:  C  3

示例数据:

df1 <- data.frame(V1 = LETTERS[1:4], V2 = 1:4)
df2 <- data.frame(V1 = LETTERS[2:3], V2 = 2:3)

其他回答

2014年新增:

特别是如果您还对数据操作感兴趣(包括排序、过滤、子设置、汇总等),那么您应该看看dplyr,它提供了各种功能,所有这些功能都旨在帮助您处理数据帧和某些其他数据库类型。它甚至提供了相当复杂的SQL接口,甚至还提供了一个将(大多数)SQL代码直接转换为R的函数。

dplyr包中的四个连接相关功能是(引用):

inner_join(x,y,by=NULL,copy=FALSE,…):返回x,其中y中有匹配的值,以及x和y中的所有列left_join(x,y,by=NULL,copy=FALSE,…):返回x中的所有行,以及x和y中的所有列semi_join(x,y,by=NULL,copy=FALSE,…):返回x中存在匹配值的所有行y、 只保留x中的列。anti_join(x,y,by=NULL,copy=FALSE,…):返回x中的所有行其中y中没有匹配的值,只保留x中的列

这一切都很详细。

可以通过select(df,“column”)来选择列。如果这对您来说还不够SQL,那么还有SQL()函数,您可以在其中原样输入SQL代码,它将执行您指定的操作,就像您一直在用R编写一样(有关更多信息,请参阅dplyr/databases vignette)。例如,如果应用正确,sql(“SELECT*FROM hflights”)将从“hflights“dplyr表(一个“tbl”)中选择所有列。

对于所有列上的内部联接,还可以使用data.table-package中的finteract或dplyr包中的intersect作为合并的替代方法,而不指定by列。这将给出两个数据帧之间相等的行:

merge(df1, df2)
#   V1 V2
# 1  B  2
# 2  C  3

dplyr::intersect(df1, df2)
#   V1 V2
# 1  B  2
# 2  C  3

data.table::fintersect(setDT(df1), setDT(df2))
#    V1 V2
# 1:  B  2
# 2:  C  3

示例数据:

df1 <- data.frame(V1 = LETTERS[1:4], V2 = 1:4)
df2 <- data.frame(V1 = LETTERS[2:3], V2 = 2:3)

你也可以使用哈德利·威克姆(Hadley Wickham)很棒的dplyr包来完成连接。

library(dplyr)

#make sure that CustomerId cols are both the same type
#they aren’t in the provided data (one is integer and one is double)
df1$CustomerId <- as.double(df1$CustomerId)

可变联接:使用df2中的匹配项将列添加到df1

#inner
inner_join(df1, df2)

#left outer
left_join(df1, df2)

#right outer
right_join(df1, df2)

#alternate right outer
left_join(df2, df1)

#full join
full_join(df1, df2)

过滤联接:过滤掉df1中的行,不修改列

#keep only observations in df1 that match in df2.
semi_join(df1, df2)

#drop all observations in df1 that match in df2.
anti_join(df1, df2)

我建议您查看Gabor Grothendieck的sqldf包,它允许您用SQL表示这些操作。

library(sqldf)

## inner join
df3 <- sqldf("SELECT CustomerId, Product, State 
              FROM df1
              JOIN df2 USING(CustomerID)")

## left join (substitute 'right' for right join)
df4 <- sqldf("SELECT CustomerId, Product, State 
              FROM df1
              LEFT JOIN df2 USING(CustomerID)")

我发现SQL语法比它的R等效语法更简单和自然(但这可能只是反映了我的RDBMS偏见)。

有关连接的更多信息,请参阅Gabor的sqldfGitHub。

通过使用merge函数及其可选参数:

内部连接:merge(df1,df2)将适用于这些示例,因为R会通过公共变量名自动连接帧,但您很可能希望指定merge(df1,df1,by=“CustomerId”),以确保仅在所需字段上匹配。如果匹配变量在不同的数据帧中具有不同的名称,也可以使用by.x和by.y参数。

外部联接:合并(x=df1,y=df2,by=“CustomerId”,all=TRUE)

左外部:合并(x=df1,y=df2,by=“CustomerId”,all.x=TRUE)

右外部:合并(x=df1,y=df2,by=“CustomerId”,all.y=TRUE)

交叉联接:合并(x=df1,y=df2,by=NULL)

与内部联接一样,您可能希望将“CustomerId”显式传递给R作为匹配变量。我认为几乎总是最好明确说明要合并的标识符;如果输入data.frames发生意外变化,则会更安全,并且以后更容易阅读。

您可以通过给定向量(例如,by=c(“CustomerId”,“OrderId”))合并多个列。

如果要合并的列名不相同,则可以指定,例如,by.x=“CustomerId_in_df1”,by.y=“CustomerId.in_df2”,其中CustomerId_in_df1是第一个数据帧中的列名,CustomerId_in-df2是第二个数据帧的列名。(如果需要合并多个列,这些也可以是向量。)