给定两个数据帧:

df1 = data.frame(CustomerId = c(1:6), Product = c(rep("Toaster", 3), rep("Radio", 3)))
df2 = data.frame(CustomerId = c(2, 4, 6), State = c(rep("Alabama", 2), rep("Ohio", 1)))

df1
#  CustomerId Product
#           1 Toaster
#           2 Toaster
#           3 Toaster
#           4   Radio
#           5   Radio
#           6   Radio

df2
#  CustomerId   State
#           2 Alabama
#           4 Alabama
#           6    Ohio

如何进行数据库样式(即sql样式)连接?也就是说,我如何获得:

df1和df2的内部连接:仅返回左表在右表中具有匹配键的行。df1和df2的外部连接:返回两个表中的所有行,连接左侧表中具有匹配键的记录。df1和df2的左外联接(或简单的左联接)返回左表中的所有行,以及右表中具有匹配键的所有行。df1和df2的右外部连接返回右表中的所有行,以及左表中具有匹配键的所有行。


额外学分:

如何执行SQL样式的选择语句?


当前回答

dplyr从0.4开始实现了包括outer_join在内的所有连接,但值得注意的是,在0.4之前的前几个版本中,因此,在之后的相当长一段时间里,有很多非常糟糕的黑客解决方法用户代码(你仍然可以在那个时期的SO、Kaggle answers和github中找到这样的代码。因此,这个答案仍然有用。)

加入相关发布亮点:

版本0.5(2016年6月)

POSIXct类型、时区、重复项、不同因素级别的处理。更好的错误和警告。新后缀参数,用于控制重复变量名称接收的后缀(#1296)

版本0.4.0(2015年1月)

实施右联接和外联接(#96)可变联接,它从另一个表中的匹配行向一个表添加新变量。过滤联接,根据观察值是否与另一个表中的观察值匹配来过滤一个表的观察值。

版本0.3(2014年10月)

现在可以通过每个表中的不同变量进行left_join:df1%>%left_join(df2,c(“var1”=“var2”))

0.2版(2014年5月)

*_join()不再重新排序列名(#324)

版本0.1.3(2014年4月)

具有inner_join、left_join、semi_join、anti_joinouter_join尚未实现,回退是使用base::merge()(或plyr::join())尚未实现right_join和outer_join哈德利在这里提到了其他优势目前,dplyr所没有的一个小特性是,可以像Python panda那样,通过.x和.y列进行分隔。

根据哈德利在该问题中的评论采取的解决方法:

就行而言,rightjoin(x,y)与leftjoin(y,x)相同,只是列的顺序不同。轻松使用select(new_column_order)outer_join基本上是并集(leftjoin(x,y),rightjoin(y,x)),即保留两个数据帧中的所有行。

其他回答

你也可以使用哈德利·威克姆(Hadley Wickham)很棒的dplyr包来完成连接。

library(dplyr)

#make sure that CustomerId cols are both the same type
#they aren’t in the provided data (one is integer and one is double)
df1$CustomerId <- as.double(df1$CustomerId)

可变联接:使用df2中的匹配项将列添加到df1

#inner
inner_join(df1, df2)

#left outer
left_join(df1, df2)

#right outer
right_join(df1, df2)

#alternate right outer
left_join(df2, df1)

#full join
full_join(df1, df2)

过滤联接:过滤掉df1中的行,不修改列

#keep only observations in df1 that match in df2.
semi_join(df1, df2)

#drop all observations in df1 that match in df2.
anti_join(df1, df2)

通过使用merge函数及其可选参数:

内部连接:merge(df1,df2)将适用于这些示例,因为R会通过公共变量名自动连接帧,但您很可能希望指定merge(df1,df1,by=“CustomerId”),以确保仅在所需字段上匹配。如果匹配变量在不同的数据帧中具有不同的名称,也可以使用by.x和by.y参数。

外部联接:合并(x=df1,y=df2,by=“CustomerId”,all=TRUE)

左外部:合并(x=df1,y=df2,by=“CustomerId”,all.x=TRUE)

右外部:合并(x=df1,y=df2,by=“CustomerId”,all.y=TRUE)

交叉联接:合并(x=df1,y=df2,by=NULL)

与内部联接一样,您可能希望将“CustomerId”显式传递给R作为匹配变量。我认为几乎总是最好明确说明要合并的标识符;如果输入data.frames发生意外变化,则会更安全,并且以后更容易阅读。

您可以通过给定向量(例如,by=c(“CustomerId”,“OrderId”))合并多个列。

如果要合并的列名不相同,则可以指定,例如,by.x=“CustomerId_in_df1”,by.y=“CustomerId.in_df2”,其中CustomerId_in_df1是第一个数据帧中的列名,CustomerId_in-df2是第二个数据帧的列名。(如果需要合并多个列,这些也可以是向量。)

对于所有列上的内部联接,还可以使用data.table-package中的finteract或dplyr包中的intersect作为合并的替代方法,而不指定by列。这将给出两个数据帧之间相等的行:

merge(df1, df2)
#   V1 V2
# 1  B  2
# 2  C  3

dplyr::intersect(df1, df2)
#   V1 V2
# 1  B  2
# 2  C  3

data.table::fintersect(setDT(df1), setDT(df2))
#    V1 V2
# 1:  B  2
# 2:  C  3

示例数据:

df1 <- data.frame(V1 = LETTERS[1:4], V2 = 1:4)
df2 <- data.frame(V1 = LETTERS[2:3], V2 = 2:3)

使用merge函数,我们可以选择左表或右表的变量,就像我们熟悉的SQL中的select语句一样(例如:从…中选择a.*…或选择b.*)我们必须添加额外的代码,这些代码将从新连接的表中子集。SQL:-从df1中选择a.*a内部联接df2 b,位于a.CustomerId=b.CustomerIdR:-mmerge(df1,df2,按.x=“CustomerId”,按.y=“CustomerId)[,名称(df1)]

同样的方式

SQL:-从df1中选择b.*a内部联接df2 b,位于a.CustomerId=b.CustomerIdR:-mmerge(df1,df2,by.x=“CustomerId”,by.y=“客户ID”)[,名称(df2)]

在连接两个数据帧时,每个数据帧约有100万行,一个数据帧有2列,另一个数据框约有20行,我惊讶地发现merge(…,all.x=TRUE,all.y=TRUE)比dplyr::full_join()更快。这是dplyr v0.4

合并需要约17秒,完全加入需要约65秒。

尽管如此,我还是需要一些食物,因为我通常默认使用dplyr来执行操作任务。