我听说了很多关于PyPy项目的事情。他们声称它比他们网站上的CPython解释器快6.3倍。

每当我们谈论像Python这样的动态语言时,速度是首要问题之一。为了解决这个问题,他们说PyPy要快6.3倍。

第二个问题是并行性,即臭名昭著的全局解释器锁(GIL)。为此,PyPy说它可以提供无gil的Python。

如果PyPy可以解决这些巨大的挑战,那么它的弱点是什么?也就是说,是什么阻止了像我这样的典型的Python开发人员现在转向PyPy ?


当前回答

我发现了一些例子,其中PyPy比Python慢。 但是:只在Windows上。

C:\Users\User>python -m timeit -n10 -s"from sympy import isprime" "isprime(2**521-1);isprime(2**1279-1)"
10 loops, best of 3: 294 msec per loop

C:\Users\User>pypy -m timeit -n10 -s"from sympy import isprime" "isprime(2**521-1);isprime(2**1279-1)"
10 loops, best of 3: 1.33 sec per loop

所以,如果你想到PyPy,忘了Windows吧。 在Linux上,你可以实现惊人的加速。 示例(列出1到1,000,000之间的所有质数):

from sympy import sieve
primes = list(sieve.primerange(1, 10**6))

这在PyPy上比在Python上快10(!)倍。 但不是在窗户上。那里的速度只有原来的3倍。

其他回答

我发现了一些例子,其中PyPy比Python慢。 但是:只在Windows上。

C:\Users\User>python -m timeit -n10 -s"from sympy import isprime" "isprime(2**521-1);isprime(2**1279-1)"
10 loops, best of 3: 294 msec per loop

C:\Users\User>pypy -m timeit -n10 -s"from sympy import isprime" "isprime(2**521-1);isprime(2**1279-1)"
10 loops, best of 3: 1.33 sec per loop

所以,如果你想到PyPy,忘了Windows吧。 在Linux上,你可以实现惊人的加速。 示例(列出1到1,000,000之间的所有质数):

from sympy import sieve
primes = list(sieve.primerange(1, 10**6))

这在PyPy上比在Python上快10(!)倍。 但不是在窗户上。那里的速度只有原来的3倍。

第二个问题比较容易回答:如果所有代码都是纯Python,那么基本上可以使用PyPy作为替代。然而,许多广泛使用的库(包括一些标准库)是用C编写的,并编译为Python扩展。其中一些可以与PyPy一起工作,一些不能。PyPy提供了与Python相同的“面向”工具——也就是说,它是Python——但其内部结构不同,因此与这些内部结构交互的工具将无法工作。

至于第一个问题,我想这有点像第一个问题:PyPy一直在快速发展,以提高速度并增强与其他代码的互操作性。这使得它更像是实验性的,而不是官方的。

我认为,如果PyPy进入稳定状态,它可能会开始得到更广泛的应用。我还认为对Python来说,摆脱C语言的基础是一件很棒的事情。但这在一段时间内不会发生。PyPy还没有达到临界质量,它本身几乎足够有用,可以做你想做的所有事情,这将激励人们填补空白。

对于许多项目,不同的python之间在速度方面实际上是0%的差异。这是由工程时间主导的,所有的python都有相同数量的库支持。

简单来说:PyPy提供了CPython所缺乏的速度,但牺牲了它的兼容性。然而,大多数人选择Python是因为它的灵活性和“包含电池的”特性(高兼容性),而不是因为它的速度(尽管它仍然是首选)。

支持的Python版本

引用Python的禅意:

可读性。

例如,Python 3.8引入了fstring =。

Python 3.8+中可能有其他对您更重要的特性。PyPy目前不支持Python 3.8+。

无耻的自我广告:Python版本的杀手特性-如果你想知道更多你使用旧Python版本时错过的东西