asyncio。Gather和asyncio。wait似乎有类似的用途:我有一堆异步的东西,我想要执行/等待(不一定要等待一个完成后再开始下一个)。它们使用不同的语法,在一些细节上也有所不同,但在我看来,两个函数在功能上有如此巨大的重叠是非常不python的。我错过了什么?
虽然在一般情况下类似(“运行并获得许多任务的结果”),但每个函数对于其他情况都有一些特定的功能:
asyncio聚集()。
返回一个Future实例,允许对任务进行高级分组:
import asyncio
from pprint import pprint
import random
async def coro(tag):
print(">", tag)
await asyncio.sleep(random.uniform(1, 3))
print("<", tag)
return tag
loop = asyncio.get_event_loop()
group1 = asyncio.gather(*[coro("group 1.{}".format(i)) for i in range(1, 6)])
group2 = asyncio.gather(*[coro("group 2.{}".format(i)) for i in range(1, 4)])
group3 = asyncio.gather(*[coro("group 3.{}".format(i)) for i in range(1, 10)])
all_groups = asyncio.gather(group1, group2, group3)
results = loop.run_until_complete(all_groups)
loop.close()
pprint(results)
可以通过调用group2.cancel()甚至all_groups.cancel()来取消组中的所有任务。也参见.gather(…return_exceptions = True),
asyncio.wait ()
支持在第一个任务完成后等待停止,或在指定的超时后,允许较低的操作精度:
import asyncio
import random
async def coro(tag):
print(">", tag)
await asyncio.sleep(random.uniform(0.5, 5))
print("<", tag)
return tag
loop = asyncio.get_event_loop()
tasks = [coro(i) for i in range(1, 11)]
print("Get first result:")
finished, unfinished = loop.run_until_complete(
asyncio.wait(tasks, return_when=asyncio.FIRST_COMPLETED))
for task in finished:
print(task.result())
print("unfinished:", len(unfinished))
print("Get more results in 2 seconds:")
finished2, unfinished2 = loop.run_until_complete(
asyncio.wait(unfinished, timeout=2))
for task in finished2:
print(task.result())
print("unfinished2:", len(unfinished2))
print("Get all other results:")
finished3, unfinished3 = loop.run_until_complete(asyncio.wait(unfinished2))
for task in finished3:
print(task.result())
loop.close()
asyncio。Wait的级别比asyncio.gather低。
顾名思义,asyncio。Gather主要集中在收集结果。它等待一堆期货,并以给定的顺序返回结果。
asyncio。等待只是等待未来。它不会直接给出结果,而是给出已完成和待完成的任务。您必须手动收集这些值。
此外,您可以指定等待所有期货完成,或者只等待第一个期货。
我还注意到你可以在wait()中通过简单地指定列表来提供一组协程:
result=loop.run_until_complete(asyncio.wait([
say('first hello', 2),
say('second hello', 1),
say('third hello', 4)
]))
而在gather()中分组是通过指定多个协程来完成的:
result=loop.run_until_complete(asyncio.gather(
say('first hello', 2),
say('second hello', 1),
say('third hello', 4)
))
很容易忽略的一个非常重要的区别是,当涉及到异常时,这两个函数的默认行为。
我将使用这个示例来模拟一个会引发异常的协程,有时是-
import asyncio
import random
async def a_flaky_tsk(i):
await asyncio.sleep(i) # bit of fuzz to simulate a real-world example
if i % 2 == 0:
print(i, "ok")
else:
print(i, "crashed!")
raise ValueError
coros = [a_flaky_tsk(i) for i in range(10)]
等待asyncio.gather(*coros)输出-
0 ok
1 crashed!
Traceback (most recent call last):
File "/Users/dev/PycharmProjects/trading/xxx.py", line 20, in <module>
asyncio.run(main())
File "/Users/dev/.pyenv/versions/3.8.2/lib/python3.8/asyncio/runners.py", line 43, in run
return loop.run_until_complete(main)
File "/Users/dev/.pyenv/versions/3.8.2/lib/python3.8/asyncio/base_events.py", line 616, in run_until_complete
return future.result()
File "/Users/dev/PycharmProjects/trading/xxx.py", line 17, in main
await asyncio.gather(*coros)
File "/Users/dev/PycharmProjects/trading/xxx.py", line 12, in a_flaky_tsk
raise ValueError
ValueError
正如您所看到的,索引1之后的coro从未执行过。由gather()返回的Future在此时完成(不像wait())并且程序终止,但是如果你可以保持程序存活,其他协程仍然有机会运行:
async def main():
coros = [a_flaky_tsk(i) for i in range(10)]
await asyncio.gather(*coros)
if __name__ == '__main__':
loop = asyncio.new_event_loop()
loop.create_task(main())
loop.run_forever()
# 0 ok
# 1 crashed!
# Task exception was never retrieved
# ....
# 2 ok
# 3 crashed!
# 4 ok
# 5 crashed!
# 6 ok
# 7 crashed!
# 8 ok
# 9 crashed!
但是await asyncio.wait(coros)继续执行任务,即使其中一些任务失败(wait()返回的Future没有完成,不像gather()) -
0 ok
1 crashed!
2 ok
3 crashed!
4 ok
5 crashed!
6 ok
7 crashed!
8 ok
9 crashed!
Task exception was never retrieved
future: <Task finished name='Task-10' coro=<a_flaky_tsk() done, defined at /Users/dev/PycharmProjects/trading/xxx.py:6> exception=ValueError()>
Traceback (most recent call last):
File "/Users/dev/PycharmProjects/trading/xxx.py", line 12, in a_flaky_tsk
raise ValueError
ValueError
Task exception was never retrieved
future: <Task finished name='Task-8' coro=<a_flaky_tsk() done, defined at /Users/dev/PycharmProjects/trading/xxx.py:6> exception=ValueError()>
Traceback (most recent call last):
File "/Users/dev/PycharmProjects/trading/xxx.py", line 12, in a_flaky_tsk
raise ValueError
ValueError
Task exception was never retrieved
future: <Task finished name='Task-2' coro=<a_flaky_tsk() done, defined at /Users/dev/PycharmProjects/trading/xxx.py:6> exception=ValueError()>
Traceback (most recent call last):
File "/Users/dev/PycharmProjects/trading/xxx.py", line 12, in a_flaky_tsk
raise ValueError
ValueError
Task exception was never retrieved
future: <Task finished name='Task-9' coro=<a_flaky_tsk() done, defined at /Users/dev/PycharmProjects/trading/xxx.py:6> exception=ValueError()>
Traceback (most recent call last):
File "/Users/dev/PycharmProjects/trading/xxx.py", line 12, in a_flaky_tsk
raise ValueError
ValueError
Task exception was never retrieved
future: <Task finished name='Task-3' coro=<a_flaky_tsk() done, defined at /Users/dev/PycharmProjects/trading/xxx.py:6> exception=ValueError()>
Traceback (most recent call last):
File "/Users/dev/PycharmProjects/trading/xxx.py", line 12, in a_flaky_tsk
raise ValueError
ValueError
当然,可以通过使用-来改变这两种行为
asyncio.gather(…return_exceptions = True)
or,
asyncio.wait([…), return_when = asyncio.FIRST_EXCEPTION)
但这还没完!
注意: 从未检索到任务异常 在上面的日志中。
Asyncio.wait()不会从子任务重新引发异常,直到你单独等待它们。(日志中的堆栈跟踪只是消息,它们不能被捕获!)
done, pending = await asyncio.wait(coros)
for tsk in done:
try:
await tsk
except Exception as e:
print("I caught:", repr(e))
输出-
0 ok
1 crashed!
2 ok
3 crashed!
4 ok
5 crashed!
6 ok
7 crashed!
8 ok
9 crashed!
I caught: ValueError()
I caught: ValueError()
I caught: ValueError()
I caught: ValueError()
I caught: ValueError()
另一方面,要用asyncio.gather()捕获异常,必须-
results = await asyncio.gather(*coros, return_exceptions=True)
for result_or_exc in results:
if isinstance(result_or_exc, Exception):
print("I caught:", repr(result_or_exc))
(输出与之前相同)
除了前面的所有答案之外,我还想谈谈gather()和wait()在被取消时的不同行为。
收集()取消
如果gather()被取消,所有提交的可等待对象(尚未完成的)也将被取消。
Wait()取消
如果wait()ing任务被取消,它只是抛出一个CancelledError,等待的任务保持不变。
简单的例子:
import asyncio
async def task(arg):
await asyncio.sleep(5)
return arg
async def cancel_waiting_task(work_task, waiting_task):
await asyncio.sleep(2)
waiting_task.cancel()
try:
await waiting_task
print("Waiting done")
except asyncio.CancelledError:
print("Waiting task cancelled")
try:
res = await work_task
print(f"Work result: {res}")
except asyncio.CancelledError:
print("Work task cancelled")
async def main():
work_task = asyncio.create_task(task("done"))
waiting = asyncio.create_task(asyncio.wait({work_task}))
await cancel_waiting_task(work_task, waiting)
work_task = asyncio.create_task(task("done"))
waiting = asyncio.gather(work_task)
await cancel_waiting_task(work_task, waiting)
asyncio.run(main())
输出:
asyncio.wait()
Waiting task cancelled
Work result: done
----------------
asyncio.gather()
Waiting task cancelled
Work task cancelled
应用实例
有时需要结合wait()和gather()功能。例如,我们希望等待至少一个任务的完成,然后取消其余的挂起任务,如果等待本身被取消,那么也要取消所有挂起的任务。
作为真实的例子,假设我们有一个断开连接事件和一个工作任务。我们希望等待工作任务的结果,但如果连接丢失,则取消它。或者,我们将发出几个并行请求,但在完成至少一个响应后,取消所有其他请求。
可以这样做:
import asyncio
from typing import Optional, Tuple, Set
async def wait_any(
tasks: Set[asyncio.Future], *, timeout: Optional[int] = None,
) -> Tuple[Set[asyncio.Future], Set[asyncio.Future]]:
tasks_to_cancel: Set[asyncio.Future] = set()
try:
done, tasks_to_cancel = await asyncio.wait(
tasks, timeout=timeout, return_when=asyncio.FIRST_COMPLETED
)
return done, tasks_to_cancel
except asyncio.CancelledError:
tasks_to_cancel = tasks
raise
finally:
for task in tasks_to_cancel:
task.cancel()
async def task():
await asyncio.sleep(5)
async def cancel_waiting_task(work_task, waiting_task):
await asyncio.sleep(2)
waiting_task.cancel()
try:
await waiting_task
print("Waiting done")
except asyncio.CancelledError:
print("Waiting task cancelled")
try:
res = await work_task
print(f"Work result: {res}")
except asyncio.CancelledError:
print("Work task cancelled")
async def check_tasks(waiting_task, working_task, waiting_conn_lost_task):
try:
await waiting_task
print("waiting is done")
except asyncio.CancelledError:
print("waiting is cancelled")
try:
await waiting_conn_lost_task
print("connection is lost")
except asyncio.CancelledError:
print("waiting connection lost is cancelled")
try:
await working_task
print("work is done")
except asyncio.CancelledError:
print("work is cancelled")
async def work_done_case():
working_task = asyncio.create_task(task())
connection_lost_event = asyncio.Event()
waiting_conn_lost_task = asyncio.create_task(connection_lost_event.wait())
waiting_task = asyncio.create_task(wait_any({working_task, waiting_conn_lost_task}))
await check_tasks(waiting_task, working_task, waiting_conn_lost_task)
async def conn_lost_case():
working_task = asyncio.create_task(task())
connection_lost_event = asyncio.Event()
waiting_conn_lost_task = asyncio.create_task(connection_lost_event.wait())
waiting_task = asyncio.create_task(wait_any({working_task, waiting_conn_lost_task}))
await asyncio.sleep(2)
connection_lost_event.set() # <---
await check_tasks(waiting_task, working_task, waiting_conn_lost_task)
async def cancel_waiting_case():
working_task = asyncio.create_task(task())
connection_lost_event = asyncio.Event()
waiting_conn_lost_task = asyncio.create_task(connection_lost_event.wait())
waiting_task = asyncio.create_task(wait_any({working_task, waiting_conn_lost_task}))
await asyncio.sleep(2)
waiting_task.cancel() # <---
await check_tasks(waiting_task, working_task, waiting_conn_lost_task)
async def main():
print("Work done")
print("-------------------")
await work_done_case()
print("\nConnection lost")
print("-------------------")
await conn_lost_case()
print("\nCancel waiting")
print("-------------------")
await cancel_waiting_case()
asyncio.run(main())
输出:
Work done
-------------------
waiting is done
waiting connection lost is cancelled
work is done
Connection lost
-------------------
waiting is done
connection is lost
work is cancelled
Cancel waiting
-------------------
waiting is cancelled
waiting connection lost is cancelled
work is cancelled
推荐文章
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合
- 使用Python解析HTML
- django MultiValueDictKeyError错误,我如何处理它
- 如何在for循环期间修改列表条目?
- 我如何在Django中创建一个鼻涕虫?
- 如何使HTTP请求在PHP和不等待响应
- 没有名为'django.core.urlresolvers'的模块
- 蟒蛇导出环境文件
- 反应-显示加载屏幕,而DOM是渲染?
- Django - makemigrations -未检测到任何更改
- SQLAlchemy:引擎、连接和会话差异
- 在Python Pandas中删除多个列中的所有重复行
- 更改pandas DataFrame中的特定列名
- 将Pandas多索引转换为列