我试图替换一个数据框架的一列的值。列('female')只包含值'female'和'male'。

我尝试过以下方法:

w['female']['female']='1'
w['female']['male']='0' 

但收到的是与之前结果完全相同的副本。

理想情况下,我希望得到类似于以下循环元素的输出。

if w['female'] =='female':
    w['female'] = '1';
else:
    w['female'] = '0';

我已经查看了gotchas文档(http://pandas.pydata.org/pandas-docs/stable/gotchas.html),但不明白为什么什么都没有发生。

任何帮助都将不胜感激。


当前回答

这非常紧凑:

w['female'][w['female'] == 'female']=1
w['female'][w['female'] == 'male']=0

另一个好例子:

w['female'] = w['female'].replace(regex='female', value=1)
w['female'] = w['female'].replace(regex='male', value=0)

其他回答

如果你只有两个类,你可以使用相等运算符。例如:

df = pd.DataFrame({'col1':['a', 'a', 'a', 'b']})

df['col1'].eq('a').astype(int)
# (df['col1'] == 'a').astype(int)

输出:

0    1
1    1
2    1
3    0
Name: col1, dtype: int64
w.replace({'female':{'female':1, 'male':0}}, inplace = True)

上面的代码将把'female'替换为1,'male'替换为0,仅在'female'列中

这也可以工作:

w.female[w.female == 'female'] = 1 
w.female[w.female == 'male']   = 0

这非常紧凑:

w['female'][w['female'] == 'female']=1
w['female'][w['female'] == 'male']=0

另一个好例子:

w['female'] = w['female'].replace(regex='female', value=1)
w['female'] = w['female'].replace(regex='male', value=0)

还有一个内置函数pd。Get_dummies用于这些类型的赋值:

w['female'] = pd.get_dummies(w['female'],drop_first = True)

这为您提供了一个有两列的数据帧,每一列对应出现在w['female']中的每个值,您可以删除其中的第一列(因为您可以从剩下的一列推断它)。新列将自动命名为您替换的字符串。

如果有两个以上可能值的分类变量,这尤其有用。这个函数创建了尽可能多的虚拟变量来区分所有情况。请注意,不要将整个数据帧分配到单个列中,相反,如果w['female']可以是'male', 'female'或'neutral',请执行如下操作:

w = pd.concat([w, pd.get_dummies(w['female'], drop_first = True)], axis = 1])
w.drop('female', axis = 1, inplace = True)

然后你剩下两个新的列,给你'female'的虚拟编码,你去掉了带字符串的列。