是否有一个用于工作线程的Pool类,类似于多处理模块的Pool类?

例如,我喜欢并行化映射函数的简单方法

def long_running_func(p):
    c_func_no_gil(p)

p = multiprocessing.Pool(4)
xs = p.map(long_running_func, range(100))

然而,我想这样做没有创建新进程的开销。

我知道GIL。然而,在我的用例中,该函数将是一个io绑定的C函数,python包装器将在实际函数调用之前释放GIL。

我必须编写自己的线程池吗?


当前回答

没有内置的基于线程的池。但是,使用queue类实现生产者/消费者队列可以非常快。

来自: https://docs.python.org/2/library/queue.html

from threading import Thread
from Queue import Queue
def worker():
    while True:
        item = q.get()
        do_work(item)
        q.task_done()

q = Queue()
for i in range(num_worker_threads):
     t = Thread(target=worker)
     t.daemon = True
     t.start()

for item in source():
    q.put(item)

q.join()       # block until all tasks are done

其他回答

这是我最终使用的结果。它是dgorissen上面的类的修改版本。

文件:threadpool.py

from queue import Queue, Empty
import threading
from threading import Thread


class Worker(Thread):
    _TIMEOUT = 2
    """ Thread executing tasks from a given tasks queue. Thread is signalable, 
        to exit
    """
    def __init__(self, tasks, th_num):
        Thread.__init__(self)
        self.tasks = tasks
        self.daemon, self.th_num = True, th_num
        self.done = threading.Event()
        self.start()

    def run(self):       
        while not self.done.is_set():
            try:
                func, args, kwargs = self.tasks.get(block=True,
                                                   timeout=self._TIMEOUT)
                try:
                    func(*args, **kwargs)
                except Exception as e:
                    print(e)
                finally:
                    self.tasks.task_done()
            except Empty as e:
                pass
        return

    def signal_exit(self):
        """ Signal to thread to exit """
        self.done.set()


class ThreadPool:
    """Pool of threads consuming tasks from a queue"""
    def __init__(self, num_threads, tasks=[]):
        self.tasks = Queue(num_threads)
        self.workers = []
        self.done = False
        self._init_workers(num_threads)
        for task in tasks:
            self.tasks.put(task)

    def _init_workers(self, num_threads):
        for i in range(num_threads):
            self.workers.append(Worker(self.tasks, i))

    def add_task(self, func, *args, **kwargs):
        """Add a task to the queue"""
        self.tasks.put((func, args, kwargs))

    def _close_all_threads(self):
        """ Signal all threads to exit and lose the references to them """
        for workr in self.workers:
            workr.signal_exit()
        self.workers = []

    def wait_completion(self):
        """Wait for completion of all the tasks in the queue"""
        self.tasks.join()

    def __del__(self):
        self._close_all_threads()


def create_task(func, *args, **kwargs):
    return (func, args, kwargs)

使用泳池

from random import randrange
from time import sleep

delays = [randrange(1, 10) for i in range(30)]

def wait_delay(d):
    print('sleeping for (%d)sec' % d)
    sleep(d)

pool = ThreadPool(20)
for i, d in enumerate(delays):
    pool.add_task(wait_delay, d)
pool.wait_completion()

我刚刚发现,在多处理模块中实际上有一个基于线程的池接口,但是它有些隐藏,并且没有正确地记录。

它可以通过

from multiprocessing.pool import ThreadPool

它是使用封装python线程的虚拟Process类实现的。这个基于线程的Process类可以在multiprocessing中找到。在文档中简单提到过。这个虚拟模块提供了基于线程的整个多处理接口。

另一种方法是将进程添加到线程队列池中

import concurrent.futures
with concurrent.futures.ThreadPoolExecutor(max_workers=cpus) as executor:
    for i in range(10):
        a = executor.submit(arg1, arg2,....)

创建新进程的开销是最小的,特别是当只有4个进程时。我怀疑这是您的应用程序的性能热点。保持简单,优化你必须做的和分析结果指向的地方。

是的,它似乎(或多或少)具有相同的API。

import multiprocessing

def worker(lnk):
    ....    
def start_process():
    .....
....

if(PROCESS):
    pool = multiprocessing.Pool(processes=POOL_SIZE, initializer=start_process)
else:
    pool = multiprocessing.pool.ThreadPool(processes=POOL_SIZE, 
                                           initializer=start_process)

pool.map(worker, inputs)
....