是一个简短的语法连接列表列表到一个单一的列表(或迭代器)在python?

例如,我有一个列表,如下所示,我想迭代a,b和c。

x = [["a","b"], ["c"]]

我能想到的最好的是如下。

result = []
[ result.extend(el) for el in x] 

for el in result:
  print el

当前回答

如果你需要一个列表,而不是一个生成器,使用list():

from itertools import chain
x = [["a","b"], ["c"]]
y = list(chain(*x))

其他回答

来晚了,但是…

我是python的新手,有lisp的背景。这是我想出的(检查lulz的var名称):

def flatten(lst):
    if lst:
        car,*cdr=lst
        if isinstance(car,(list,tuple)):
            if cdr: return flatten(car) + flatten(cdr)
            return flatten(car)
        if cdr: return [car] + flatten(cdr)
        return [car]

似乎有用。测试:

flatten((1,2,3,(4,5,6,(7,8,(((1,2)))))))

返回:

[1, 2, 3, 4, 5, 6, 7, 8, 1, 2]

性能比较:

import itertools
import timeit
big_list = [[0]*1000 for i in range(1000)]
timeit.repeat(lambda: list(itertools.chain.from_iterable(big_list)), number=100)
timeit.repeat(lambda: list(itertools.chain(*big_list)), number=100)
timeit.repeat(lambda: (lambda b: map(b.extend, big_list))([]), number=100)
timeit.repeat(lambda: [el for list_ in big_list for el in list_], number=100)
[100*x for x in timeit.repeat(lambda: sum(big_list, []), number=1)]

生产:

>>> import itertools
>>> import timeit
>>> big_list = [[0]*1000 for i in range(1000)]
>>> timeit.repeat(lambda: list(itertools.chain.from_iterable(big_list)), number=100)
[3.016212113769325, 3.0148865239060227, 3.0126415732791028]
>>> timeit.repeat(lambda: list(itertools.chain(*big_list)), number=100)
[3.019953987082083, 3.528754223385439, 3.02181439266457]
>>> timeit.repeat(lambda: (lambda b: map(b.extend, big_list))([]), number=100)
[1.812084445152557, 1.7702404451095965, 1.7722977998725362]
>>> timeit.repeat(lambda: [el for list_ in big_list for el in list_], number=100)
[5.409658160700605, 5.477502077679354, 5.444318360412744]
>>> [100*x for x in timeit.repeat(lambda: sum(big_list, []), number=1)]
[399.27587954973444, 400.9240571138051, 403.7521153804846]

这是在Windows XP 32位的Python 2.7.1上,但上面评论中的@temoto得到from_iterable比map+extend更快,所以它相当依赖于平台和输入。

不要使用sum(big_list, [])

这就是所谓的扁平化,有很多实现。

这个怎么样,尽管它只适用于1级深嵌套:

>>> x = [["a","b"], ["c"]]
>>> for el in sum(x, []):
...     print el
...
a
b
c

从这些链接中,显然最完整的-fast-elegant-etc实现如下:

def flatten(l, ltypes=(list, tuple)):
    ltype = type(l)
    l = list(l)
    i = 0
    while i < len(l):
        while isinstance(l[i], ltypes):
            if not l[i]:
                l.pop(i)
                i -= 1
                break
            else:
                l[i:i + 1] = l[i]
        i += 1
    return ltype(l)

如果你只深入一层,一个嵌套的理解也可以:

>>> x = [["a","b"], ["c"]]
>>> [inner
...     for outer in x
...         for inner in outer]
['a', 'b', 'c']

在一行上,它变成:

>>> [j for i in x for j in i]
['a', 'b', 'c']

对于一级扁平化,如果你关心速度,在我尝试过的所有条件下,这比之前的任何答案都快。(也就是说,如果您需要结果作为列表。如果你只需要在运行中迭代它,那么链的例子可能更好。)它的工作原理是预先分配一个最终大小的列表,并按片复制部分(这是一种比任何迭代器方法都低级别的块复制):

def join(a):
    """Joins a sequence of sequences into a single sequence.  (One-level flattening.)
    E.g., join([(1,2,3), [4, 5], [6, (7, 8, 9), 10]]) = [1,2,3,4,5,6,(7,8,9),10]
    This is very efficient, especially when the subsequences are long.
    """
    n = sum([len(b) for b in a])
    l = [None]*n
    i = 0
    for b in a:
        j = i+len(b)
        l[i:j] = b
        i = j
    return l

带注释的排序时间列表:

[(0.5391559600830078, 'flatten4b'), # join() above. 
(0.5400412082672119, 'flatten4c'), # Same, with sum(len(b) for b in a) 
(0.5419249534606934, 'flatten4a'), # Similar, using zip() 
(0.7351131439208984, 'flatten1b'), # list(itertools.chain.from_iterable(a)) 
(0.7472689151763916, 'flatten1'), # list(itertools.chain(*a)) 
(1.5468521118164062, 'flatten3'), # [i for j in a for i in j] 
(26.696547985076904, 'flatten2')] # sum(a, [])