我开始使用Python编写各种项目的代码(包括Django web开发和Panda3D游戏开发)。

为了帮助我理解发生了什么,我想基本上“看看”Python对象内部,看看它们是如何运行的——比如它们的方法和属性。

假设我有一个Python对象,我需要什么来打印它的内容?这可能吗?


当前回答

有一个python代码库构建就是为了这个目的:inspect在python 2.7中介绍过

其他回答

object.__dict__

尝试ppretty

from ppretty import ppretty


class A(object):
    s = 5

    def __init__(self):
        self._p = 8

    @property
    def foo(self):
        return range(10)


print ppretty(A(), indent='    ', depth=2, width=30, seq_length=6,
              show_protected=True, show_private=False, show_static=True,
              show_properties=True, show_address=True)

输出:

__main__.A at 0x1debd68L (
    _p = 8, 
    foo = [0, 1, 2, ..., 7, 8, 9], 
    s = 5
)

Vars (obj)返回对象的属性。

If you want to look inside a live object, then python's inspect module is a good answer. In general, it works for getting the source code of functions that are defined in a source file somewhere on disk. If you want to get the source of live functions and lambdas that were defined in the interpreter, you can use dill.source.getsource from dill. It also can get the code for from bound or unbound class methods and functions defined in curries... however, you might not be able to compile that code without the enclosing object's code.

>>> from dill.source import getsource
>>> 
>>> def add(x,y):
...   return x+y
... 
>>> squared = lambda x:x**2
>>> 
>>> print getsource(add)
def add(x,y):
  return x+y

>>> print getsource(squared)
squared = lambda x:x**2

>>> 
>>> class Foo(object):
...   def bar(self, x):
...     return x*x+x
... 
>>> f = Foo()
>>> 
>>> print getsource(f.bar)
def bar(self, x):
    return x*x+x

>>> 

有一个很酷的工具叫objexplore。下面是一个简单的例子,关于如何在pandas数据框架上使用它的探索功能。

import pandas as pd
df=pd.read_csv('https://storage.googleapis.com/download.tensorflow.org/data/heart.csv')

from objexplore import explore
explore(df)

将在你的shell中弹出以下内容: