我需要通过编程的方式将数千万条记录插入Postgres数据库。目前,我在一个查询中执行了数千条插入语句。

有没有更好的方法来做到这一点,一些我不知道的批量插入语句?


当前回答

正如其他人所注意到的,在将数据导入Postgres时,会因为Postgres为您设计的检查而减慢速度。此外,您经常需要以某种方式操作数据,以使其适合使用。任何可以在Postgres进程之外完成的操作都意味着您可以使用COPY协议进行导入。

For my use I regularly import data from the httparchive.org project using pgloader. As the source files are created by MySQL you need to be able to handle some MySQL oddities such as the use of \N for an empty value and along with encoding problems. The files are also so large that, at least on my machine, using FDW runs out of memory. pgloader makes it easy to create a pipeline that lets you select the fields you want, cast to the relevant data types and any additional work before it goes into your main database so that index updates, etc. are minimal.

其他回答

我刚刚遇到了这个问题,建议将csvsql(发行版)批量导入到Postgres。要执行批量插入,只需创建b,然后使用csvsql,它连接到数据库,并为整个csv文件夹创建单独的表。

$ createdb test 
$ csvsql --db postgresql:///test --insert examples/*.csv

PostgreSQL有一个关于如何最好地初始填充数据库的指南,他们建议使用COPY命令批量加载行。该指南还提供了其他一些关于如何加快处理速度的好技巧,比如在加载数据之前删除索引和外键(然后再将它们添加回来)。

((这是一个WIKI,你可以编辑和增强答案!))

外部文件是最好的和典型的批量数据

术语“批量数据”与“大量数据”有关,因此使用原始原始数据是很自然的,不需要将其转换为SQL。用于“批量插入”的典型原始数据文件是CSV和JSON格式。

带有一些转换的批量插入

在ETL应用程序和摄取过程中,我们需要在插入数据之前更改数据。临时表会消耗(大量)磁盘空间,而且这不是更快的方法。PostgreSQL外部数据包装器(FDW)是最好的选择。

CSV的例子。假设SQL和CSV文件中的表名(x, y, z)

fieldname1,fieldname2,fieldname3
etc,etc,etc
... million lines ...

你可以使用经典的SQL COPY加载(作为原始数据)到tmp_tablename,他们插入过滤数据到tablename…但是,为了避免磁盘消耗,最好是直接摄取

INSERT INTO tablename (x, y, z)
  SELECT f1(fieldname1), f2(fieldname2), f3(fieldname3) -- the transforms 
  FROM tmp_tablename_fdw
  -- WHERE condictions
;

你需要为FDW准备数据库,而不是静态tmp_tablename_fdw,你可以使用一个函数来生成它:

CREATE EXTENSION file_fdw;
CREATE SERVER import FOREIGN DATA WRAPPER file_fdw;
CREATE FOREIGN TABLE tmp_tablename_fdw(
  ...
) SERVER import OPTIONS ( filename '/tmp/pg_io/file.csv', format 'csv');

JSON的例子。一个包含两个文件的集合,myRawData1。和Ranger_Policies2。Json可以通过以下方式被摄取:

INSERT INTO tablename (fname, metadata, content)
 SELECT fname, meta, j  -- do any data transformation here
 FROM jsonb_read_files('myRawData%.json')
 -- WHERE any_condiction_here
;

函数jsonb_read_files()读取由掩码定义的文件夹中的所有文件:

CREATE or replace FUNCTION jsonb_read_files(
  p_flike text, p_fpath text DEFAULT '/tmp/pg_io/'
) RETURNS TABLE (fid int, fname text, fmeta jsonb, j jsonb) AS $f$
  WITH t AS (
     SELECT (row_number() OVER ())::int id, 
           f AS fname,
           p_fpath ||'/'|| f AS f
     FROM pg_ls_dir(p_fpath) t(f)
     WHERE f LIKE p_flike
  ) SELECT id, fname,
         to_jsonb( pg_stat_file(f) ) || jsonb_build_object('fpath', p_fpath),
         pg_read_file(f)::jsonb
    FROM t
$f$  LANGUAGE SQL IMMUTABLE;

缺少gzip流

“文件摄取”最常见的方法(主要在大数据中)是保存原始文件的gzip格式,并使用流算法传输,任何可以在unix管道中快速运行且不消耗磁盘的方法:

 gunzip remote_or_local_file.csv.gz | convert_to_sql | psql 

因此ideal (future)是.csv.gz格式的服务器选项。

@CharlieClark评论后注意:目前(2022年)无事可做,最好的替代方案似乎是pgloader STDIN:

  gunzip -c file.csv.gz | pgloader --type csv ... - pgsql:///target?foo

正如其他人所注意到的,在将数据导入Postgres时,会因为Postgres为您设计的检查而减慢速度。此外,您经常需要以某种方式操作数据,以使其适合使用。任何可以在Postgres进程之外完成的操作都意味着您可以使用COPY协议进行导入。

For my use I regularly import data from the httparchive.org project using pgloader. As the source files are created by MySQL you need to be able to handle some MySQL oddities such as the use of \N for an empty value and along with encoding problems. The files are also so large that, at least on my machine, using FDW runs out of memory. pgloader makes it easy to create a pipeline that lets you select the fields you want, cast to the relevant data types and any additional work before it goes into your main database so that index updates, etc. are minimal.

加快速度的一种方法是在一个事务中显式地执行多个插入或复制(比如1000个)。Postgres的默认行为是在每条语句之后提交,因此通过批处理提交,可以避免一些开销。正如Daniel回答中的指南所说,您可能必须禁用自动提交才能工作。还要注意底部的注释,该注释建议将wal_buffers的大小增加到16mb也可能有所帮助。