我有一个JSON文件,我想转换为CSV文件。我如何用Python做到这一点?
我试着:
import json
import csv
f = open('data.json')
data = json.load(f)
f.close()
f = open('data.csv')
csv_file = csv.writer(f)
for item in data:
csv_file.writerow(item)
f.close()
然而,这并没有起作用。我正在使用Django和我收到的错误是:
`file' object has no attribute 'writerow'`
然后我尝试了以下方法:
import json
import csv
f = open('data.json')
data = json.load(f)
f.close()
f = open('data.csv')
csv_file = csv.writer(f)
for item in data:
f.writerow(item) # ← changed
f.close()
然后得到错误:
`sequence expected`
样本json文件:
[{
"pk": 22,
"model": "auth.permission",
"fields": {
"codename": "add_logentry",
"name": "Can add log entry",
"content_type": 8
}
}, {
"pk": 23,
"model": "auth.permission",
"fields": {
"codename": "change_logentry",
"name": "Can change log entry",
"content_type": 8
}
}, {
"pk": 24,
"model": "auth.permission",
"fields": {
"codename": "delete_logentry",
"name": "Can delete log entry",
"content_type": 8
}
}, {
"pk": 4,
"model": "auth.permission",
"fields": {
"codename": "add_group",
"name": "Can add group",
"content_type": 2
}
}, {
"pk": 10,
"model": "auth.permission",
"fields": {
"codename": "add_message",
"name": "Can add message",
"content_type": 4
}
}
]
我已经尝试了很多建议的解决方案(也熊猫没有正确地规范化我的JSON),但真正好的是正确解析JSON数据来自Max Berman。
我写了一个改进,以避免每一行都有新列
在解析期间将其放置到现有列。
如果只有一个数据存在,则将值存储为字符串,如果该列有更多值,则将值存储为列表。
它有一个输入。Json文件作为输入,并输出一个output.csv。
import json
import pandas as pd
def flatten_json(json):
def process_value(keys, value, flattened):
if isinstance(value, dict):
for key in value.keys():
process_value(keys + [key], value[key], flattened)
elif isinstance(value, list):
for idx, v in enumerate(value):
process_value(keys, v, flattened)
# process_value(keys + [str(idx)], v, flattened)
else:
key1 = '__'.join(keys)
if not flattened.get(key1) is None:
if isinstance(flattened[key1], list):
flattened[key1] = flattened[key1] + [value]
else:
flattened[key1] = [flattened[key1]] + [value]
else:
flattened[key1] = value
flattened = {}
for key in json.keys():
k = key
# print("Key: " + k)
process_value([key], json[key], flattened)
return flattened
try:
f = open("input.json", "r")
except:
pass
y = json.loads(f.read())
flat = flatten_json(y)
text = json.dumps(flat)
df = pd.read_json(text)
df.to_csv('output.csv', index=False, encoding='utf-8')
我对丹提出的解决方案感到困惑,但这对我来说很管用:
import json
import csv
f = open('test.json')
data = json.load(f)
f.close()
f=csv.writer(open('test.csv','wb+'))
for item in data:
f.writerow([item['pk'], item['model']] + item['fields'].values())
“测试的地方。Json”包含以下内容:
[
{"pk": 22, "model": "auth.permission", "fields":
{"codename": "add_logentry", "name": "Can add log entry", "content_type": 8 } },
{"pk": 23, "model": "auth.permission", "fields":
{"codename": "change_logentry", "name": "Can change log entry", "content_type": 8 } }, {"pk": 24, "model": "auth.permission", "fields":
{"codename": "delete_logentry", "name": "Can delete log entry", "content_type": 8 } }
]
首先,JSON包含嵌套对象,因此通常不能直接转换为CSV。你需要把它改成这样:
{
"pk": 22,
"model": "auth.permission",
"codename": "add_logentry",
"content_type": 8,
"name": "Can add log entry"
},
......]
下面是我的代码来生成CSV:
import csv
import json
x = """[
{
"pk": 22,
"model": "auth.permission",
"fields": {
"codename": "add_logentry",
"name": "Can add log entry",
"content_type": 8
}
},
{
"pk": 23,
"model": "auth.permission",
"fields": {
"codename": "change_logentry",
"name": "Can change log entry",
"content_type": 8
}
},
{
"pk": 24,
"model": "auth.permission",
"fields": {
"codename": "delete_logentry",
"name": "Can delete log entry",
"content_type": 8
}
}
]"""
x = json.loads(x)
f = csv.writer(open("test.csv", "wb+"))
# Write CSV Header, If you dont need that, remove this line
f.writerow(["pk", "model", "codename", "name", "content_type"])
for x in x:
f.writerow([x["pk"],
x["model"],
x["fields"]["codename"],
x["fields"]["name"],
x["fields"]["content_type"]])
你会得到如下输出:
pk,model,codename,name,content_type
22,auth.permission,add_logentry,Can add log entry,8
23,auth.permission,change_logentry,Can change log entry,8
24,auth.permission,delete_logentry,Can delete log entry,8