I am using matplotlib to make scatter plots. Each point on the scatter plot is associated with a named object. I would like to be able to see the name of an object when I hover my cursor over the point on the scatter plot associated with that object. In particular, it would be nice to be able to quickly see the names of the points that are outliers. The closest thing I have been able to find while searching here is the annotate command, but that appears to create a fixed label on the plot. Unfortunately, with the number of points that I have, the scatter plot would be unreadable if I labeled each point. Does anyone know of a way to create labels that only appear when the cursor hovers in the vicinity of that point?


当前回答

似乎这里的其他答案都不能回答这个问题。这是一个代码,它使用散点并在悬停在散点上时显示注释。

import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)

x = np.random.rand(15)
y = np.random.rand(15)
names = np.array(list("ABCDEFGHIJKLMNO"))
c = np.random.randint(1,5,size=15)

norm = plt.Normalize(1,4)
cmap = plt.cm.RdYlGn

fig,ax = plt.subplots()
sc = plt.scatter(x,y,c=c, s=100, cmap=cmap, norm=norm)

annot = ax.annotate("", xy=(0,0), xytext=(20,20),textcoords="offset points",
                    bbox=dict(boxstyle="round", fc="w"),
                    arrowprops=dict(arrowstyle="->"))
annot.set_visible(False)

def update_annot(ind):

    pos = sc.get_offsets()[ind["ind"][0]]
    annot.xy = pos
    text = "{}, {}".format(" ".join(list(map(str,ind["ind"]))), 
                           " ".join([names[n] for n in ind["ind"]]))
    annot.set_text(text)
    annot.get_bbox_patch().set_facecolor(cmap(norm(c[ind["ind"][0]])))
    annot.get_bbox_patch().set_alpha(0.4)


def hover(event):
    vis = annot.get_visible()
    if event.inaxes == ax:
        cont, ind = sc.contains(event)
        if cont:
            update_annot(ind)
            annot.set_visible(True)
            fig.canvas.draw_idle()
        else:
            if vis:
                annot.set_visible(False)
                fig.canvas.draw_idle()

fig.canvas.mpl_connect("motion_notify_event", hover)

plt.show()

因为人们还想将这个解决方案用于线状图而不是散点图,所以下面的解决方案将用于图形(其工作方式略有不同)。

import matplotlib.pyplot as plt import numpy as np; np.random.seed(1) x = np.sort(np.random.rand(15)) y = np.sort(np.random.rand(15)) names = np.array(list("ABCDEFGHIJKLMNO")) norm = plt.Normalize(1,4) cmap = plt.cm.RdYlGn fig,ax = plt.subplots() line, = plt.plot(x,y, marker="o") annot = ax.annotate("", xy=(0,0), xytext=(-20,20),textcoords="offset points", bbox=dict(boxstyle="round", fc="w"), arrowprops=dict(arrowstyle="->")) annot.set_visible(False) def update_annot(ind): x,y = line.get_data() annot.xy = (x[ind["ind"][0]], y[ind["ind"][0]]) text = "{}, {}".format(" ".join(list(map(str,ind["ind"]))), " ".join([names[n] for n in ind["ind"]])) annot.set_text(text) annot.get_bbox_patch().set_alpha(0.4) def hover(event): vis = annot.get_visible() if event.inaxes == ax: cont, ind = line.contains(event) if cont: update_annot(ind) annot.set_visible(True) fig.canvas.draw_idle() else: if vis: annot.set_visible(False) fig.canvas.draw_idle() fig.canvas.mpl_connect("motion_notify_event", hover) plt.show()

如果有人正在寻找双轴线的解决方案,请参阅如何使标签出现时悬停在多个轴上的点?

如果有人正在寻找条形图的解决方案,请参考例如这个答案。

其他回答

Mplcursors对我很有用。Mplcursors为matplotlib提供了可单击的注释。它很大程度上受到mpldatacursor (https://github.com/joferkington/mpldatacursor)的启发,具有非常简化的API

import matplotlib.pyplot as plt
import numpy as np
import mplcursors

data = np.outer(range(10), range(1, 5))

fig, ax = plt.subplots()
lines = ax.plot(data)
ax.set_title("Click somewhere on a line.\nRight-click to deselect.\n"
             "Annotations can be dragged.")

mplcursors.cursor(lines) # or just mplcursors.cursor()

plt.show()

其他答案没有解决我在最新版本的Jupyter内联matplotlib图中正确显示工具提示的需求。这条是可行的:

import matplotlib.pyplot as plt
import numpy as np
import mplcursors
np.random.seed(42)

fig, ax = plt.subplots()
ax.scatter(*np.random.random((2, 26)))
ax.set_title("Mouse over a point")
crs = mplcursors.cursor(ax,hover=True)

crs.connect("add", lambda sel: sel.annotation.set_text(
    'Point {},{}'.format(sel.target[0], sel.target[1])))
plt.show()

当用鼠标浏览一个点时,会导致如下图所示:

似乎这里的其他答案都不能回答这个问题。这是一个代码,它使用散点并在悬停在散点上时显示注释。

import matplotlib.pyplot as plt
import numpy as np; np.random.seed(1)

x = np.random.rand(15)
y = np.random.rand(15)
names = np.array(list("ABCDEFGHIJKLMNO"))
c = np.random.randint(1,5,size=15)

norm = plt.Normalize(1,4)
cmap = plt.cm.RdYlGn

fig,ax = plt.subplots()
sc = plt.scatter(x,y,c=c, s=100, cmap=cmap, norm=norm)

annot = ax.annotate("", xy=(0,0), xytext=(20,20),textcoords="offset points",
                    bbox=dict(boxstyle="round", fc="w"),
                    arrowprops=dict(arrowstyle="->"))
annot.set_visible(False)

def update_annot(ind):

    pos = sc.get_offsets()[ind["ind"][0]]
    annot.xy = pos
    text = "{}, {}".format(" ".join(list(map(str,ind["ind"]))), 
                           " ".join([names[n] for n in ind["ind"]]))
    annot.set_text(text)
    annot.get_bbox_patch().set_facecolor(cmap(norm(c[ind["ind"][0]])))
    annot.get_bbox_patch().set_alpha(0.4)


def hover(event):
    vis = annot.get_visible()
    if event.inaxes == ax:
        cont, ind = sc.contains(event)
        if cont:
            update_annot(ind)
            annot.set_visible(True)
            fig.canvas.draw_idle()
        else:
            if vis:
                annot.set_visible(False)
                fig.canvas.draw_idle()

fig.canvas.mpl_connect("motion_notify_event", hover)

plt.show()

因为人们还想将这个解决方案用于线状图而不是散点图,所以下面的解决方案将用于图形(其工作方式略有不同)。

import matplotlib.pyplot as plt import numpy as np; np.random.seed(1) x = np.sort(np.random.rand(15)) y = np.sort(np.random.rand(15)) names = np.array(list("ABCDEFGHIJKLMNO")) norm = plt.Normalize(1,4) cmap = plt.cm.RdYlGn fig,ax = plt.subplots() line, = plt.plot(x,y, marker="o") annot = ax.annotate("", xy=(0,0), xytext=(-20,20),textcoords="offset points", bbox=dict(boxstyle="round", fc="w"), arrowprops=dict(arrowstyle="->")) annot.set_visible(False) def update_annot(ind): x,y = line.get_data() annot.xy = (x[ind["ind"][0]], y[ind["ind"][0]]) text = "{}, {}".format(" ".join(list(map(str,ind["ind"]))), " ".join([names[n] for n in ind["ind"]])) annot.set_text(text) annot.get_bbox_patch().set_alpha(0.4) def hover(event): vis = annot.get_visible() if event.inaxes == ax: cont, ind = line.contains(event) if cont: update_annot(ind) annot.set_visible(True) fig.canvas.draw_idle() else: if vis: annot.set_visible(False) fig.canvas.draw_idle() fig.canvas.mpl_connect("motion_notify_event", hover) plt.show()

如果有人正在寻找双轴线的解决方案,请参阅如何使标签出现时悬停在多个轴上的点?

如果有人正在寻找条形图的解决方案,请参考例如这个答案。

Mpld3为我解决它。 编辑(新增代码):

import matplotlib.pyplot as plt
import numpy as np
import mpld3

fig, ax = plt.subplots(subplot_kw=dict(axisbg='#EEEEEE'))
N = 100

scatter = ax.scatter(np.random.normal(size=N),
                 np.random.normal(size=N),
                 c=np.random.random(size=N),
                 s=1000 * np.random.random(size=N),
                 alpha=0.3,
                 cmap=plt.cm.jet)
ax.grid(color='white', linestyle='solid')

ax.set_title("Scatter Plot (with tooltips!)", size=20)

labels = ['point {0}'.format(i + 1) for i in range(N)]
tooltip = mpld3.plugins.PointLabelTooltip(scatter, labels=labels)
mpld3.plugins.connect(fig, tooltip)

mpld3.show()

你可以检查这个例子

最简单的选择是使用mplcursors包。 Mplcursors:读取文档 mplcursors: github 如果使用Anaconda,请按照这些说明安装,否则使用这些说明安装pip。 这必须在交互式窗口中绘制,而不是内联。 对于jupyter,在单元格中执行%matplotlib qt之类的代码将启用交互式绘图。参见如何在IPython笔记本中打开交互式matplotlib窗口? 在python 3.10, pandas 1.4.2, matplotlib 3.5.1, seaborn 0.11.2中测试

import matplotlib.pyplot as plt
import pandas_datareader as web  # only for test data; must be installed with conda or pip
from mplcursors import cursor  # separate package must be installed

# reproducible sample data as a pandas dataframe
df = web.DataReader('aapl', data_source='yahoo', start='2021-03-09', end='2022-06-13')

plt.figure(figsize=(12, 7))
plt.plot(df.index, df.Close)
cursor(hover=True)
plt.show()

熊猫

ax = df.plot(y='Close', figsize=(10, 7))
cursor(hover=True)
plt.show()

Seaborn

工作与轴级别的情节,如sns。Lineplot和像sns.relplot这样的数字级plot。

import seaborn as sns

# load sample data
tips = sns.load_dataset('tips')

sns.relplot(data=tips, x="total_bill", y="tip", hue="day", col="time")
cursor(hover=True)
plt.show()