我想知道如何简单地扭转一个给定的颜色地图的颜色顺序,以便使用它与plot_surface。
当前回答
在Matplotlib 2.0中,对于ListedColormap和LinearSegmentedColorMap对象有一个reversed()方法,因此您可以直接执行
Cmap_reversed = cmap.reversed()
这里是文档。
其他回答
标准配色也都有反转版本。它们的名字是一样的,只是后面加了_r。(文档)。
在matplotlib中,颜色映射不是一个列表,但它以colormap.colors的形式包含其颜色列表。以及matplotlib模块。colors提供了一个函数ListedColormap()从列表中生成颜色映射。你可以反转任何颜色的地图
colormap_r = ListedColormap(colormap.colors[::-1])
由于LinearSegmentedColormaps是基于红、绿、蓝的字典,因此有必要将每个项反转:
import matplotlib.pyplot as plt
import matplotlib as mpl
def reverse_colourmap(cmap, name = 'my_cmap_r'):
"""
In:
cmap, name
Out:
my_cmap_r
Explanation:
t[0] goes from 0 to 1
row i: x y0 y1 -> t[0] t[1] t[2]
/
/
row i+1: x y0 y1 -> t[n] t[1] t[2]
so the inverse should do the same:
row i+1: x y1 y0 -> 1-t[0] t[2] t[1]
/
/
row i: x y1 y0 -> 1-t[n] t[2] t[1]
"""
reverse = []
k = []
for key in cmap._segmentdata:
k.append(key)
channel = cmap._segmentdata[key]
data = []
for t in channel:
data.append((1-t[0],t[2],t[1]))
reverse.append(sorted(data))
LinearL = dict(zip(k,reverse))
my_cmap_r = mpl.colors.LinearSegmentedColormap(name, LinearL)
return my_cmap_r
看看它是否有效:
my_cmap
<matplotlib.colors.LinearSegmentedColormap at 0xd5a0518>
my_cmap_r = reverse_colourmap(my_cmap)
fig = plt.figure(figsize=(8, 2))
ax1 = fig.add_axes([0.05, 0.80, 0.9, 0.15])
ax2 = fig.add_axes([0.05, 0.475, 0.9, 0.15])
norm = mpl.colors.Normalize(vmin=0, vmax=1)
cb1 = mpl.colorbar.ColorbarBase(ax1, cmap = my_cmap, norm=norm,orientation='horizontal')
cb2 = mpl.colorbar.ColorbarBase(ax2, cmap = my_cmap_r, norm=norm, orientation='horizontal')
EDIT
我没有收到user3445587的评论。它在彩虹色图上工作得很好:
cmap = mpl.cm.jet
cmap_r = reverse_colourmap(cmap)
fig = plt.figure(figsize=(8, 2))
ax1 = fig.add_axes([0.05, 0.80, 0.9, 0.15])
ax2 = fig.add_axes([0.05, 0.475, 0.9, 0.15])
norm = mpl.colors.Normalize(vmin=0, vmax=1)
cb1 = mpl.colorbar.ColorbarBase(ax1, cmap = cmap, norm=norm,orientation='horizontal')
cb2 = mpl.colorbar.ColorbarBase(ax2, cmap = cmap_r, norm=norm, orientation='horizontal')
但它特别适用于自定义声明的颜色映射,因为自定义声明的颜色映射没有默认_r。以下例子来自http://matplotlib.org/examples/pylab_examples/custom_cmap.html:
cdict1 = {'red': ((0.0, 0.0, 0.0),
(0.5, 0.0, 0.1),
(1.0, 1.0, 1.0)),
'green': ((0.0, 0.0, 0.0),
(1.0, 0.0, 0.0)),
'blue': ((0.0, 0.0, 1.0),
(0.5, 0.1, 0.0),
(1.0, 0.0, 0.0))
}
blue_red1 = mpl.colors.LinearSegmentedColormap('BlueRed1', cdict1)
blue_red1_r = reverse_colourmap(blue_red1)
fig = plt.figure(figsize=(8, 2))
ax1 = fig.add_axes([0.05, 0.80, 0.9, 0.15])
ax2 = fig.add_axes([0.05, 0.475, 0.9, 0.15])
norm = mpl.colors.Normalize(vmin=0, vmax=1)
cb1 = mpl.colorbar.ColorbarBase(ax1, cmap = blue_red1, norm=norm,orientation='horizontal')
cb2 = mpl.colorbar.ColorbarBase(ax2, cmap = blue_red1_r, norm=norm, orientation='horizontal')
有两种类型的线性segmentedcolormap。在某些情况下,_segmentdata是显式给出的,例如,对于jet:
>>> cm.jet._segmentdata
{'blue': ((0.0, 0.5, 0.5), (0.11, 1, 1), (0.34, 1, 1), (0.65, 0, 0), (1, 0, 0)), 'red': ((0.0, 0, 0), (0.35, 0, 0), (0.66, 1, 1), (0.89, 1, 1), (1, 0.5, 0.5)), 'green': ((0.0, 0, 0), (0.125, 0, 0), (0.375, 1, 1), (0.64, 1, 1), (0.91, 0, 0), (1, 0, 0))}
对于rainbow, _segmentdata如下所示:
>>> cm.rainbow._segmentdata
{'blue': <function <lambda> at 0x7fac32ac2b70>, 'red': <function <lambda> at 0x7fac32ac7840>, 'green': <function <lambda> at 0x7fac32ac2d08>}
我们可以在matplotlib的源代码中找到这些函数,它们被给出为
_rainbow_data = {
'red': gfunc[33], # 33: lambda x: np.abs(2 * x - 0.5),
'green': gfunc[13], # 13: lambda x: np.sin(x * np.pi),
'blue': gfunc[10], # 10: lambda x: np.cos(x * np.pi / 2)
}
你想要的一切都已经在matplotlib中完成了,只需调用cm。Revcmap,它颠倒了两种类型的分段数据,所以
cm.revcmap(cm.rainbow._segmentdata)
应该做的工作-你可以简单地创建一个新的线性分段数据从那。在revcmap中,基于函数的SegmentData的反转是用
def _reverser(f):
def freversed(x):
return f(1 - x)
return freversed
而其他的列表则像往常一样颠倒过来
valnew = [(1.0 - x, y1, y0) for x, y0, y1 in reversed(val)]
所以实际上你想要的是
def reverse_colourmap(cmap, name = 'my_cmap_r'):
return mpl.colors.LinearSegmentedColormap(name, cm.revcmap(cmap._segmentdata))
解决方法很简单。假设您想要使用“autumn”配色方案。标准版本:
cmap = matplotlib.cm.autumn
要反转颜色图谱,使用get_cmap()函数并将'_r'附加到颜色图谱标题,如下所示:
cmap_reversed = matplotlib.cm.get_cmap('autumn_r')
推荐文章
- python中的assertEquals和assertEqual
- 如何保持Python打印不添加换行符或空格?
- 为什么Python的无穷散列中有π的数字?
- Python 3.7数据类中的类继承
- 如何在PyTorch中初始化权重?
- 计数唯一的值在一列熊猫数据框架像在Qlik?
- 使用Pandas将列转换为行
- 从matplotlib中的颜色映射中获取单个颜色
- 将Pandas或Numpy Nan替换为None以用于MysqlDB
- 使用pandas对同一列进行多个聚合
- 使用Python解析HTML
- django MultiValueDictKeyError错误,我如何处理它
- 如何在for循环期间修改列表条目?
- 我如何在Django中创建一个鼻涕虫?
- 没有名为'django.core.urlresolvers'的模块