我如何排序一个NumPy数组的第n列?
例如,给定:
a = array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
我想对a的行按第二列进行排序,得到:
array([[7, 0, 5],
[9, 2, 3],
[4, 5, 6]])
我如何排序一个NumPy数组的第n列?
例如,给定:
a = array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
我想对a的行按第二列进行排序,得到:
array([[7, 0, 5],
[9, 2, 3],
[4, 5, 6]])
当前回答
感谢这篇文章:https://stackoverflow.com/a/5204280/13890678
我用结构化数组找到了一个更“通用”的答案。 我认为这种方法的一个优点是代码更容易阅读。
import numpy as np
a = np.array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
struct_a = np.core.records.fromarrays(
a.transpose(), names="col1, col2, col3", formats="i8, i8, i8"
)
struct_a.sort(order="col2")
print(struct_a)
[(7, 0, 5) (9, 2, 3) (4, 5, 6)]
其他回答
按a的第二列排序:
a[a[:, 1].argsort()]
从NumPy邮件列表中,这里有另一个解决方案:
>>> a
array([[1, 2],
[0, 0],
[1, 0],
[0, 2],
[2, 1],
[1, 0],
[1, 0],
[0, 0],
[1, 0],
[2, 2]])
>>> a[np.lexsort(np.fliplr(a).T)]
array([[0, 0],
[0, 0],
[0, 2],
[1, 0],
[1, 0],
[1, 0],
[1, 0],
[1, 2],
[2, 1],
[2, 2]])
感谢这篇文章:https://stackoverflow.com/a/5204280/13890678
我用结构化数组找到了一个更“通用”的答案。 我认为这种方法的一个优点是代码更容易阅读。
import numpy as np
a = np.array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
struct_a = np.core.records.fromarrays(
a.transpose(), names="col1, col2, col3", formats="i8, i8, i8"
)
struct_a.sort(order="col2")
print(struct_a)
[(7, 0, 5) (9, 2, 3) (4, 5, 6)]
如果有人想在程序的关键部分使用排序,这里是不同方案的性能比较:
import numpy as np
table = np.random.rand(5000, 10)
%timeit table.view('f8,f8,f8,f8,f8,f8,f8,f8,f8,f8').sort(order=['f9'], axis=0)
1000 loops, best of 3: 1.88 ms per loop
%timeit table[table[:,9].argsort()]
10000 loops, best of 3: 180 µs per loop
import pandas as pd
df = pd.DataFrame(table)
%timeit df.sort_values(9, ascending=True)
1000 loops, best of 3: 400 µs per loop
所以,看起来使用argsort进行索引是目前为止最快的方法…
我也遇到过类似的问题。
我的问题:
我想计算SVD,并需要对特征值进行降序排序。但是我想保持特征值和特征向量之间的映射。 我的特征值在第一行对应的特征向量在它下面的同列。
我想对一个二维数组按第一行降序按列排序。
我的解决方案
a = a[::, a[0,].argsort()[::-1]]
那么这是如何工作的呢?
a[0,]是我要排序的第一行。
现在我使用argsort来获取下标的顺序。
我使用[::-1]是因为我需要降序。
最后我使用了一个[::,…]以获得按正确顺序排列的视图。