我如何排序一个NumPy数组的第n列?
例如,给定:
a = array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
我想对a的行按第二列进行排序,得到:
array([[7, 0, 5],
[9, 2, 3],
[4, 5, 6]])
我如何排序一个NumPy数组的第n列?
例如,给定:
a = array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
我想对a的行按第二列进行排序,得到:
array([[7, 0, 5],
[9, 2, 3],
[4, 5, 6]])
当前回答
一个稍微复杂一点的lexsort示例-在第一列降序,在第二列次级升序。lexsort的技巧是按行排序(因此使用. t),并优先考虑最后一行。
In [120]: b=np.array([[1,2,1],[3,1,2],[1,1,3],[2,3,4],[3,2,5],[2,1,6]])
In [121]: b
Out[121]:
array([[1, 2, 1],
[3, 1, 2],
[1, 1, 3],
[2, 3, 4],
[3, 2, 5],
[2, 1, 6]])
In [122]: b[np.lexsort(([1,-1]*b[:,[1,0]]).T)]
Out[122]:
array([[3, 1, 2],
[3, 2, 5],
[2, 1, 6],
[2, 3, 4],
[1, 1, 3],
[1, 2, 1]])
其他回答
一个稍微复杂一点的lexsort示例-在第一列降序,在第二列次级升序。lexsort的技巧是按行排序(因此使用. t),并优先考虑最后一行。
In [120]: b=np.array([[1,2,1],[3,1,2],[1,1,3],[2,3,4],[3,2,5],[2,1,6]])
In [121]: b
Out[121]:
array([[1, 2, 1],
[3, 1, 2],
[1, 1, 3],
[2, 3, 4],
[3, 2, 5],
[2, 1, 6]])
In [122]: b[np.lexsort(([1,-1]*b[:,[1,0]]).T)]
Out[122]:
array([[3, 1, 2],
[3, 2, 5],
[2, 1, 6],
[2, 3, 4],
[1, 1, 3],
[1, 2, 1]])
你可以按照Steve Tjoa的方法对多个列进行排序,使用像归并排序这样的稳定排序,并从最不重要的列到最重要的列对索引进行排序:
a = a[a[:,2].argsort()] # First sort doesn't need to be stable.
a = a[a[:,1].argsort(kind='mergesort')]
a = a[a[:,0].argsort(kind='mergesort')]
这是按第0列,第1列,第2列排序。
def sort_np_array(x, column=None, flip=False):
x = x[np.argsort(x[:, column])]
if flip:
x = np.flip(x, axis=0)
return x
数组在原来的问题:
a = np.array([[9, 2, 3],
[4, 5, 6],
[7, 0, 5]])
问题作者所期望的sort_np_array函数的结果:
sort_np_array(a, column=1, flip=False)
[2]: array([[7, 0, 5],
[9, 2, 3],
[4, 5, 6]])
如果有人想在程序的关键部分使用排序,这里是不同方案的性能比较:
import numpy as np
table = np.random.rand(5000, 10)
%timeit table.view('f8,f8,f8,f8,f8,f8,f8,f8,f8,f8').sort(order=['f9'], axis=0)
1000 loops, best of 3: 1.88 ms per loop
%timeit table[table[:,9].argsort()]
10000 loops, best of 3: 180 µs per loop
import pandas as pd
df = pd.DataFrame(table)
%timeit df.sort_values(9, ascending=True)
1000 loops, best of 3: 400 µs per loop
所以,看起来使用argsort进行索引是目前为止最快的方法…
从NumPy邮件列表中,这里有另一个解决方案:
>>> a
array([[1, 2],
[0, 0],
[1, 0],
[0, 2],
[2, 1],
[1, 0],
[1, 0],
[0, 0],
[1, 0],
[2, 2]])
>>> a[np.lexsort(np.fliplr(a).T)]
array([[0, 0],
[0, 0],
[0, 2],
[1, 0],
[1, 0],
[1, 0],
[1, 0],
[1, 2],
[2, 1],
[2, 2]])