我试图将一个范围的数字转换为另一个,保持比率。数学不是我的强项。

I have an image file where point values may range from -16000.00 to 16000.00 though the typical range may be much less. What I want to do is compress these values into the integer range 0-100, where 0 is the value of the smallest point, and 100 is the value of the largest. All points in between should keep a relative ratio even though some precision is being lost I'd like to do this in python but even a general algorithm should suffice. I'd prefer an algorithm where the min/max or either range can be adjusted (ie, the second range could be -50 to 800 instead of 0 to 100).


当前回答

在由PenguinTD提供的清单中,我不明白为什么范围是颠倒的,它不需要颠倒范围就能工作。线性范围转换基于线性方程Y=Xm+n,其中m和n是从给定的范围推导出来的。与其将范围称为min和max,不如将它们称为1和2。所以公式是:

Y = (((X - x1) * (y2 - y1)) / (x2 - x1)) + y1

当X=x1时Y=y1,当X=x2时Y=y2。X1, x2, y1和y2可以取任意正值或负值。在宏中定义表达式使其更有用,它可以与任何参数名称一起使用。

#define RangeConv(X, x1, x2, y1, y2) (((float)((X - x1) * (y2 - y1)) / (x2 - x1)) + y1)

在所有实参都是整数值的情况下,浮点强制转换将确保浮点除法。 根据应用程序的不同,可能不需要检查x1=x2和y1==y2的范围。

其他回答

有一种情况,当您检查的所有值都相同时,@jerryjvl的代码将返回NaN。

if (OldMin != OldMax && NewMin != NewMax):
    return (((OldValue - OldMin) * (NewMax - NewMin)) / (OldMax - OldMin)) + NewMin
else:
    return (NewMax + NewMin) / 2

列出理解一行的解决方案

color_array_new = [int((((x - min(node_sizes)) * 99) / (max(node_sizes) - min(node_sizes))) + 1) for x in node_sizes]

完整版

def colour_specter(waste_amount):
color_array = []
OldRange = max(waste_amount) - min(waste_amount)
NewRange = 99
for number_value in waste_amount:
    NewValue = int((((number_value - min(waste_amount)) * NewRange) / OldRange) + 1)
    color_array.append(NewValue)
print(color_array)
return color_array
NewValue = (((OldValue - OldMin) * (NewMax - NewMin)) / (OldMax - OldMin)) + NewMin

或者更容易读懂:

OldRange = (OldMax - OldMin)  
NewRange = (NewMax - NewMin)  
NewValue = (((OldValue - OldMin) * NewRange) / OldRange) + NewMin

或者如果你想保护旧范围为0的情况(OldMin = OldMax):

OldRange = (OldMax - OldMin)
if (OldRange == 0)
    NewValue = NewMin
else
{
    NewRange = (NewMax - NewMin)  
    NewValue = (((OldValue - OldMin) * NewRange) / OldRange) + NewMin
}

注意,在这种情况下,我们被迫任意选择一个可能的新范围值。根据上下文,明智的选择可能是:NewMin(见示例),NewMax或(NewMin + NewMax) / 2

我写了一个函数用R来做这个,方法和上面一样,但是我需要在R中做很多次,所以我想分享一下,以防它对任何人有帮助。

convertRange <- function(
  oldValue,
  oldRange = c(-16000.00, 16000.00), 
  newRange = c(0, 100),
  returnInt = TRUE # the poster asked for an integer, so this is an option
){
  oldMin <- oldRange[1]
  oldMax <- oldRange[2]
  newMin <- newRange[1]
  newMax <- newRange[2]
  newValue = (((oldValue - oldMin)* (newMax - newMin)) / (oldMax - oldMin)) + newMin
  
  if(returnInt){
   return(round(newValue))
  } else {
   return(newValue)
  }
}

这是一个简单的线性变换。

new_value = ( (old_value - old_min) / (old_max - old_min) ) * (new_max - new_min) + new_min

因此,将10000在-16000到16000的范围内转换为0到100的新范围会得到:

old_value = 10000
old_min = -16000
old_max = 16000
new_min = 0
new_max = 100

new_value = ( ( 10000 - -16000 ) / (16000 - -16000) ) * (100 - 0) + 0
          = 81.25