在对另一个问题的回答的评论中,有人说他们不确定functools是什么。Wraps在做什么。所以,我问这个问题是为了在StackOverflow上有一个记录,以供将来参考:functools。包裹真的有用吗?
当前回答
I very often use classes, rather than functions, for my decorators. I was having some trouble with this because an object won't have all the same attributes that are expected of a function. For example, an object won't have the attribute __name__. I had a specific issue with this that was pretty hard to trace where Django was reporting the error "object has no attribute '__name__'". Unfortunately, for class-style decorators, I don't believe that @wrap will do the job. I have instead created a base decorator class like so:
class DecBase(object):
func = None
def __init__(self, func):
self.__func = func
def __getattribute__(self, name):
if name == "func":
return super(DecBase, self).__getattribute__(name)
return self.func.__getattribute__(name)
def __setattr__(self, name, value):
if name == "func":
return super(DecBase, self).__setattr__(name, value)
return self.func.__setattr__(name, value)
该类将所有属性调用代理给正在被修饰的函数。所以,你现在可以创建一个简单的装饰器,检查2个参数是否像这样指定:
class process_login(DecBase):
def __call__(self, *args):
if len(args) != 2:
raise Exception("You can only specify two arguments")
return self.func(*args)
其他回答
I very often use classes, rather than functions, for my decorators. I was having some trouble with this because an object won't have all the same attributes that are expected of a function. For example, an object won't have the attribute __name__. I had a specific issue with this that was pretty hard to trace where Django was reporting the error "object has no attribute '__name__'". Unfortunately, for class-style decorators, I don't believe that @wrap will do the job. I have instead created a base decorator class like so:
class DecBase(object):
func = None
def __init__(self, func):
self.__func = func
def __getattribute__(self, name):
if name == "func":
return super(DecBase, self).__getattribute__(name)
return self.func.__getattribute__(name)
def __setattr__(self, name, value):
if name == "func":
return super(DecBase, self).__setattr__(name, value)
return self.func.__setattr__(name, value)
该类将所有属性调用代理给正在被修饰的函数。所以,你现在可以创建一个简单的装饰器,检查2个参数是否像这样指定:
class process_login(DecBase):
def __call__(self, *args):
if len(args) != 2:
raise Exception("You can only specify two arguments")
return self.func(*args)
假设我们有这个:Simple Decorator,它接受一个函数的输出并将其放入一个字符串中,后面跟着三个!!!!。
def mydeco(func):
def wrapper(*args, **kwargs):
return f'{func(*args, **kwargs)}!!!'
return wrapper
现在让我们用“mydeco”装饰两个不同的函数:
@mydeco
def add(a, b):
'''Add two objects together, the long way'''
return a + b
@mydeco
def mysum(*args):
'''Sum any numbers together, the long way'''
total = 0
for one_item in args:
total += one_item
return total
当运行add(10,20), mysum(1,2,3,4),它工作!
>>> add(10,20)
'30!!!'
>>> mysum(1,2,3,4)
'10!!!!'
然而,name属性在定义函数时给出了它的名称,
>>>add.__name__
'wrapper`
>>>mysum.__name__
'wrapper'
更糟糕的是
>>> help(add)
Help on function wrapper in module __main__:
wrapper(*args, **kwargs)
>>> help(mysum)
Help on function wrapper in module __main__:
wrapper(*args, **kwargs)
我们可以通过以下方法进行部分修复:
def mydeco(func):
def wrapper(*args, **kwargs):
return f'{func(*args, **kwargs)}!!!'
wrapper.__name__ = func.__name__
wrapper.__doc__ = func.__doc__
return wrapper
现在我们再次运行第5步(第二次):
>>> help(add)
Help on function add in module __main__:
add(*args, **kwargs)
Add two objects together, the long way
>>> help(mysum)
Help on function mysum in module __main__:
mysum(*args, **kwargs)
Sum any numbers together, the long way
但是我们可以使用functools。包装(蒸煮工具)
from functools import wraps
def mydeco(func):
@wraps(func)
def wrapper(*args, **kwargs):
return f'{func(*args, **kwargs)}!!!'
return wrapper
现在再次运行第5步(第三次)
>>> help(add)
Help on function add in module main:
add(a, b)
Add two objects together, the long way
>>> help(mysum)
Help on function mysum in module main:
mysum(*args)
Sum any numbers together, the long way
参考
前提条件:你必须知道如何使用装饰,特别是包装。这个评论解释得很清楚,或者这个链接也解释得很好。 当我们使用For eg: @ wrapper函数时。根据这个链接中给出的细节,它说
functools。Wraps是一个方便的函数,用于在定义包装器函数时调用update_wrapper()作为函数装饰器。 它等价于partial(update_wrapper, wrapped=wrapped, assigned=assigned, updated=updated)。
@wraps decorator实际上给了functools一个调用。部分(func [* args][, * *关键字])。
functools.partial()定义是这样说的
partial()用于局部函数应用程序,它“冻结”函数的部分参数和/或关键字,从而生成具有简化签名的新对象。例如,partial()可以用来创建一个行为类似int()函数的可调用对象,其中base参数默认为2:
>>> from functools import partial
>>> basetwo = partial(int, base=2)
>>> basetwo.__doc__ = 'Convert base 2 string to an int.'
>>> basetwo('10010')
18
这使我得出结论,@wraps调用partial(),并将包装器函数作为参数传递给它。partial()最后返回简化版本,即包装器函数内部的对象,而不是包装器函数本身。
简而言之,就是functools。Wraps只是一个普通的函数。让我们考虑这个官方的例子。在源代码的帮助下,我们可以看到关于实现和运行步骤的更多细节,如下所示:
wraps(f)返回一个对象,比如O1。它是类Partial的对象 下一步是@O1…这是python中的装饰符符号。它的意思是
包装器= O1.__call__(包装)
检查__call__的实现,我们看到在这一步之后,(左边)包装器变成了self.func(*self. func)生成的对象。检查__new__中O1的创建,我们知道self. args, *args, **newkeywords)Func是函数update_wrapper。它使用参数*args(右边的包装器)作为第一个参数。检查update_wrapper的最后一步,可以看到返回了右边的包装器,并根据需要修改了一些属性。
从python 3.5+开始:
@functools.wraps(f)
def g():
pass
g = functools的别名。update_wrapper(g, f)。它只做三件事:
它复制了f on g的__module__, __name__, __qualname__, __doc__和__annotations__属性。这个默认列表在WRAPPER_ASSIGNMENTS中,你可以在functools源代码中看到它。 它用f.__dict__中的所有元素更新g的__dict__。(请参阅源代码中的WRAPPER_UPDATES) 它在g上设置了一个新的__wrapped__=f属性
结果是g看起来与f具有相同的名称、文档字符串、模块名称和签名。唯一的问题是,关于签名,这实际上不是真的:它只是inspect。默认情况下签名遵循包装器链。你可以使用inspect来检查它。signature(g, follow_wrapped=False),如文档中解释的那样。这有令人讨厌的后果:
即使所提供的参数无效,包装器代码也会执行。 包装器代码不能轻易地从接收到的*args, **kwargs中通过名称访问参数。实际上,必须处理所有情况(位置、关键字、默认),因此需要使用Signature.bind()之类的东西。
现在在functools之间有一点混淆。包装和装饰器,因为开发装饰器的一个非常常见的用例是包装函数。但两者都是完全独立的概念。如果您有兴趣了解其中的区别,我为这两种方法都实现了帮助库:decopatch可以轻松地编写装饰器,makefun可以为@wraps提供一个保留签名的替代品。注意,makefun依赖于与著名的decorator库相同的经过验证的技巧。
推荐文章
- 如何在交互式Python中查看整个命令历史?
- 如何显示有两个小数点后的浮点数?
- 如何用OpenCV2.0和Python2.6调整图像大小
- 在每个列表元素上调用int()函数?
- 当使用代码存储库时,如何引用资源的相对路径
- 如何在Flask-SQLAlchemy中按id删除记录
- 在Python中插入列表的第一个位置
- Python Pandas只合并某些列
- 如何在一行中连接两个集而不使用“|”
- 从字符串中移除前缀
- 代码结束时发出警报
- 如何在Python中按字母顺序排序字符串中的字母
- 在matplotlib中将y轴标签添加到次要y轴
- 如何消除数独方块的凹凸缺陷?
- 为什么出现这个UnboundLocalError(闭包)?