今天我需要一个简单的算法来检查一个数字是否是2的幂。

该算法需要:

简单的 适用于任何ulong值。

我想出了这个简单的算法:

private bool IsPowerOfTwo(ulong number)
{
    if (number == 0)
        return false;

    for (ulong power = 1; power > 0; power = power << 1)
    {
        // This for loop used shifting for powers of 2, meaning
        // that the value will become 0 after the last shift
        // (from binary 1000...0000 to 0000...0000) then, the 'for'
        // loop will break out.

        if (power == number)
            return true;
        if (power > number)
            return false;
    }
    return false;
}

但后来我想:如何检查log2x是否恰好是一个整数呢?当我检查2^63+1时,Math.Log()因为四舍五入而返回恰好63。我检查了2的63次方是否等于原来的数,结果是正确的,因为计算是双倍的,而不是精确的数字。

private bool IsPowerOfTwo_2(ulong number)
{
    double log = Math.Log(number, 2);
    double pow = Math.Pow(2, Math.Round(log));
    return pow == number;
}

这对于给定的错误值返回true: 9223372036854775809。

有没有更好的算法?


当前回答

int isPowerOfTwo(unsigned int x)
{
    return ((x != 0) && ((x & (~x + 1)) == x));
}

这真的很快。检查所有2^32个整数大约需要6分43秒。

其他回答

private static bool IsPowerOfTwo(ulong x)
{
    var l = Math.Log(x, 2);
    return (l == Math.Floor(l));
}

这是我设计的另一个方法,在这种情况下使用|而不是&:

bool is_power_of_2(ulong x) {
    if(x ==  (1 << (sizeof(ulong)*8 -1) ) return true;
    return (x > 0) && (x<<1 == (x|(x-1)) +1));
}
return ((x != 0) && !(x & (x - 1)));

如果x是2的幂,它唯一的1位在位置n。这意味着x - 1在位置n有一个0。要了解原因,请回忆一下二进制减法是如何工作的。当x减去1时,借位一直传播到位置n;位n变为0,所有低位变为1。现在,由于x和x - 1没有共同的1位,x & (x - 1)为0,并且!(x & (x - 1))为真。

假设1是2的幂,也就是2的0次方

 bool IsPowerOfTwo(ulong testValue)
 {
  ulong bitTest = 1;
  while (bitTest != 0)
  {
    if (bitTest == testValue) return true;
    bitTest = bitTest << 1;
  }

  return false;
}

如果该数字是2的幂到64的值,则返回该值(您可以在for循环条件中更改它(“6”表示2^6 = 64);

const isPowerOfTwo = (number) => { 让结果= false; For(令I = 1;I <= 6;我+ +){ if (number ===数学。Pow (2, i)) { 结果= true; } } 返回结果; }; console.log (isPowerOfTwo (16)); console.log (isPowerOfTwo (10));