在Python中对正则表达式使用compile有什么好处吗?
h = re.compile('hello')
h.match('hello world')
vs
re.match('hello', 'hello world')
在Python中对正则表达式使用compile有什么好处吗?
h = re.compile('hello')
h.match('hello world')
vs
re.match('hello', 'hello world')
当前回答
根据Python文档:
序列
prog = re.compile(pattern)
result = prog.match(string)
等于
result = re.match(pattern, string)
但是,当表达式将在一个程序中多次使用时,使用re.compile()并保存生成的正则表达式对象以供重用会更有效。
所以我的结论是,如果你要为许多不同的文本匹配相同的模式,你最好预编译它。
其他回答
使用第二个版本时,正则表达式在使用之前会进行编译。如果你要多次执行它,最好先编译它。如果不是每次编译都匹配一次性的是好的。
抛开性能差异不考虑,使用re.compile和使用编译后的正则表达式对象进行匹配(任何与正则表达式相关的操作)使得Python运行时的语义更加清晰。
我有过调试一些简单代码的痛苦经历:
compare = lambda s, p: re.match(p, s)
然后我用compare in
[x for x in data if compare(patternPhrases, x[columnIndex])]
其中patternPhrases应该是一个包含正则表达式字符串的变量,x[columnIndex]是一个包含字符串的变量。
我有麻烦,patternPhrases不匹配一些预期的字符串!
但是如果我使用re.compile形式:
compare = lambda s, p: p.match(s)
然后在
[x for x in data if compare(patternPhrases, x[columnIndex])]
Python会抱怨“字符串没有匹配属性”,因为在compare中通过位置参数映射,x[columnIndex]被用作正则表达式!其实我的意思是
compare = lambda p, s: p.match(s)
在我的例子中,使用re.compile更明确地表达了正则表达式的目的,当它的值对肉眼隐藏时,因此我可以从Python运行时检查中获得更多帮助。
因此,我这一课的寓意是,当正则表达式不仅仅是字面字符串时,那么我应该使用re.compile让Python帮助我断言我的假设。
除了表演。
使用compile帮助我区分的概念 1. 模块(re), 2. 正则表达式对象 3.匹配对象 当我开始学习正则表达式的时候
#regex object
regex_object = re.compile(r'[a-zA-Z]+')
#match object
match_object = regex_object.search('1.Hello')
#matching content
match_object.group()
output:
Out[60]: 'Hello'
V.S.
re.search(r'[a-zA-Z]+','1.Hello').group()
Out[61]: 'Hello'
作为补充,我做了一个详尽的备忘单模块re供您参考。
regex = {
'brackets':{'single_character': ['[]', '.', {'negate':'^'}],
'capturing_group' : ['()','(?:)', '(?!)' '|', '\\', 'backreferences and named group'],
'repetition' : ['{}', '*?', '+?', '??', 'greedy v.s. lazy ?']},
'lookaround' :{'lookahead' : ['(?=...)', '(?!...)'],
'lookbehind' : ['(?<=...)','(?<!...)'],
'caputuring' : ['(?P<name>...)', '(?P=name)', '(?:)'],},
'escapes':{'anchor' : ['^', '\b', '$'],
'non_printable' : ['\n', '\t', '\r', '\f', '\v'],
'shorthand' : ['\d', '\w', '\s']},
'methods': {['search', 'match', 'findall', 'finditer'],
['split', 'sub']},
'match_object': ['group','groups', 'groupdict','start', 'end', 'span',]
}
(几个月后)很容易在re.match周围添加自己的缓存, 或者其他任何事情——
""" Re.py: Re.match = re.match + cache
efficiency: re.py does this already (but what's _MAXCACHE ?)
readability, inline / separate: matter of taste
"""
import re
cache = {}
_re_type = type( re.compile( "" ))
def match( pattern, str, *opt ):
""" Re.match = re.match + cache re.compile( pattern )
"""
if type(pattern) == _re_type:
cpat = pattern
elif pattern in cache:
cpat = cache[pattern]
else:
cpat = cache[pattern] = re.compile( pattern, *opt )
return cpat.match( str )
# def search ...
一个wibni,如果:cachehint(size=), cacheinfo() -> size, hits, nclear…
我的理解是,这两个例子实际上是等价的。唯一的区别是,在第一种情况下,您可以在其他地方重用已编译的正则表达式,而不会导致再次编译它。
这里有一个参考:http://diveintopython3.ep.io/refactoring.html
使用字符串'M'调用已编译模式对象的搜索函数,其效果与同时使用正则表达式和字符串'M'调用re.search相同。只是要快得多。(事实上,re.search函数只是编译正则表达式,并为您调用结果模式对象的搜索方法。)