在Python中对正则表达式使用compile有什么好处吗?

h = re.compile('hello')
h.match('hello world')

vs

re.match('hello', 'hello world')

当前回答

易读性/认知负荷偏好

对我来说,主要的收获是我只需要记住和阅读复杂的正则表达式API语法的一种形式——<compiled_pattern>.method(xxx)形式而不是那个和re.func(<pattern>, xxx)形式。

re.compile(<pattern>)是一个额外的样板文件,true。

但是考虑到正则表达式,额外的编译步骤不太可能是认知负荷的主要原因。事实上,对于复杂的模式,您甚至可以通过将声明与随后对其调用的任何regex方法分开来获得清晰性。

我倾向于首先在Regex101这样的网站中调优复杂的模式,甚至在单独的最小测试脚本中调优,然后将它们带入我的代码中,因此将声明与其使用分离也适合我的工作流程。

其他回答

FWIW:

$ python -m timeit -s "import re" "re.match('hello', 'hello world')"
100000 loops, best of 3: 3.82 usec per loop

$ python -m timeit -s "import re; h=re.compile('hello')" "h.match('hello world')"
1000000 loops, best of 3: 1.26 usec per loop

因此,如果您将经常使用同一个正则表达式,可能值得执行re.compile(特别是对于更复杂的正则表达式)。

反对过早优化的标准论点适用,但如果您怀疑regexp可能成为性能瓶颈,我不认为使用re.compile会真正失去多少清晰度/直接性。

更新:

在Python 3.6(我怀疑上述计时是使用Python 2.x完成的)和2018硬件(MacBook Pro)下,我现在得到以下计时:

% python -m timeit -s "import re" "re.match('hello', 'hello world')"
1000000 loops, best of 3: 0.661 usec per loop

% python -m timeit -s "import re; h=re.compile('hello')" "h.match('hello world')"
1000000 loops, best of 3: 0.285 usec per loop

% python -m timeit -s "import re" "h=re.compile('hello'); h.match('hello world')"
1000000 loops, best of 3: 0.65 usec per loop

% python --version
Python 3.6.5 :: Anaconda, Inc.

我还添加了一个案例(注意最后两次运行之间的引号差异),表明re.match(x,…)从字面上[大致]等价于re.compile(x).match(…),即似乎没有发生编译表示的幕后缓存。

我同意诚实的亚伯,所给例子中的匹配(…)是不同的。他们不是一对一的比较,因此,结果是不同的。为了简化我的回答,我用A, B, C, D来表示这些函数。哦,是的,我们在re.py中处理的是4个函数而不是3个。

运行这段代码:

h = re.compile('hello')                   # (A)
h.match('hello world')                    # (B)

与运行此代码相同:

re.match('hello', 'hello world')          # (C)

因为,当查看源代码re.py时,(A + B)意味着:

h = re._compile('hello')                  # (D)
h.match('hello world')

(C)实际上是:

re._compile('hello').match('hello world')

因此,(C)与(B)并不相同,实际上(C)在调用(D)之后调用(B), (D)也被(A)调用,换句话说,(C) = (A) + (B),因此,在循环中比较(A + B)与在循环中比较(C)的结果相同。

George的regexTest.py为我们证明了这一点。

noncompiled took 4.555 seconds.           # (C) in a loop
compiledInLoop took 4.620 seconds.        # (A + B) in a loop
compiled took 2.323 seconds.              # (A) once + (B) in a loop

大家的兴趣是,如何得到2.323秒的结果。为了确保compile(…)只被调用一次,我们需要将编译后的regex对象存储在内存中。如果使用类,则可以存储对象,并在每次调用函数时重用该对象。

class Foo:
    regex = re.compile('hello')
    def my_function(text)
        return regex.match(text)

如果我们不使用类(这是我今天的要求),那么我没有评论。我还在学习如何在Python中使用全局变量,我知道全局变量不是什么好东西。

还有一点,我认为使用(A) + (B)的方法有优势。以下是我观察到的一些事实(如果我错了,请指正):

Calls A once, it will do one search in the _cache followed by one sre_compile.compile() to create a regex object. Calls A twice, it will do two searches and one compile (because the regex object is cached). If the _cache gets flushed in between, then the regex object is released from memory and Python needs to compile again. (someone suggests that Python won't recompile.) If we keep the regex object by using (A), the regex object will still get into _cache and get flushed somehow. But our code keeps a reference on it and the regex object will not be released from memory. Those, Python need not to compile again. The 2 seconds difference in George's test compiled loop vs compiled is mainly the time required to build the key and search the _cache. It doesn't mean the compile time of regex. George's reallycompile test show what happens if it really re-do the compile every time: it will be 100x slower (he reduced the loop from 1,000,000 to 10,000).

以下是(A + B)比(C)更好的情况:

如果可以在类中缓存regex对象的引用。 如果需要重复调用(B)(在循环内或多次),则必须在循环外缓存对regex对象的引用。

如果(C)足够好:

不能缓存引用。 我们只是偶尔用一次。 总的来说,我们没有太多的正则表达式(假设编译后的正则表达式永远不会被刷新)

简单回顾一下,以下是abc:

h = re.compile('hello')                   # (A)
h.match('hello world')                    # (B)
re.match('hello', 'hello world')          # (C)

感谢阅读。

这个答案可能姗姗来迟,但却是一个有趣的发现。如果你打算多次使用regex,使用compile真的可以节省你的时间(这在文档中也有提到)。下面你可以看到,当直接调用match方法时,使用编译后的正则表达式是最快的。将一个编译好的正则表达式传递给re.match会使它更慢,而将re.match与patter字符串传递在中间的某个地方。

>>> ipr = r'\D+((([0-2][0-5]?[0-5]?)\.){3}([0-2][0-5]?[0-5]?))\D+'
>>> average(*timeit.repeat("re.match(ipr, 'abcd100.10.255.255 ')", globals={'ipr': ipr, 're': re}))
1.5077415757028423
>>> ipr = re.compile(ipr)
>>> average(*timeit.repeat("re.match(ipr, 'abcd100.10.255.255 ')", globals={'ipr': ipr, 're': re}))
1.8324008992184038
>>> average(*timeit.repeat("ipr.match('abcd100.10.255.255 ')", globals={'ipr': ipr, 're': re}))
0.9187896518778871

一般来说,我发现在编译模式时使用标志比内联使用标志更容易(至少更容易记住如何使用),比如re.I。

>>> foo_pat = re.compile('foo',re.I)
>>> foo_pat.findall('some string FoO bar')
['FoO']

vs

>>> re.findall('(?i)foo','some string FoO bar')
['FoO']

我的理解是,这两个例子实际上是等价的。唯一的区别是,在第一种情况下,您可以在其他地方重用已编译的正则表达式,而不会导致再次编译它。

这里有一个参考:http://diveintopython3.ep.io/refactoring.html

使用字符串'M'调用已编译模式对象的搜索函数,其效果与同时使用正则表达式和字符串'M'调用re.search相同。只是要快得多。(事实上,re.search函数只是编译正则表达式,并为您调用结果模式对象的搜索方法。)