在Python中对正则表达式使用compile有什么好处吗?

h = re.compile('hello')
h.match('hello world')

vs

re.match('hello', 'hello world')

当前回答

易读性/认知负荷偏好

对我来说,主要的收获是我只需要记住和阅读复杂的正则表达式API语法的一种形式——<compiled_pattern>.method(xxx)形式而不是那个和re.func(<pattern>, xxx)形式。

re.compile(<pattern>)是一个额外的样板文件,true。

但是考虑到正则表达式,额外的编译步骤不太可能是认知负荷的主要原因。事实上,对于复杂的模式,您甚至可以通过将声明与随后对其调用的任何regex方法分开来获得清晰性。

我倾向于首先在Regex101这样的网站中调优复杂的模式,甚至在单独的最小测试脚本中调优,然后将它们带入我的代码中,因此将声明与其使用分离也适合我的工作流程。

其他回答

这是个好问题。你经常看到人们毫无理由地使用re.compile。它降低了可读性。但是可以肯定的是,很多时候需要预编译表达式。就像你在循环中重复使用它一样。

这就像编程的一切(实际上是生活中的一切)。运用常识。

下面是一个使用re.compile的示例,在请求时速度超过50倍。

这一点与我在上面的评论中所说的是一样的,即当您的使用从编译缓存中获益不多时,使用re.compile可能是一个显著的优势。这种情况至少发生在一个特定的情况下(我在实践中遇到过),即当以下所有情况都成立时:

您有很多regex模式(不仅仅是re._MAXCACHE,它目前的默认值是512),以及 你经常使用这些正则表达式,而且 相同模式的连续使用之间被多个re._MAXCACHE其他正则表达式分隔,因此每个正则表达式在连续使用之间从缓存中刷新。

import re
import time

def setup(N=1000):
    # Patterns 'a.*a', 'a.*b', ..., 'z.*z'
    patterns = [chr(i) + '.*' + chr(j)
                    for i in range(ord('a'), ord('z') + 1)
                    for j in range(ord('a'), ord('z') + 1)]
    # If this assertion below fails, just add more (distinct) patterns.
    # assert(re._MAXCACHE < len(patterns))
    # N strings. Increase N for larger effect.
    strings = ['abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz'] * N
    return (patterns, strings)

def without_compile():
    print('Without re.compile:')
    patterns, strings = setup()
    print('searching')
    count = 0
    for s in strings:
        for pat in patterns:
            count += bool(re.search(pat, s))
    return count

def without_compile_cache_friendly():
    print('Without re.compile, cache-friendly order:')
    patterns, strings = setup()
    print('searching')
    count = 0
    for pat in patterns:
        for s in strings:
            count += bool(re.search(pat, s))
    return count

def with_compile():
    print('With re.compile:')
    patterns, strings = setup()
    print('compiling')
    compiled = [re.compile(pattern) for pattern in patterns]
    print('searching')
    count = 0
    for s in strings:
        for regex in compiled:
            count += bool(regex.search(s))
    return count

start = time.time()
print(with_compile())
d1 = time.time() - start
print(f'-- That took {d1:.2f} seconds.\n')

start = time.time()
print(without_compile_cache_friendly())
d2 = time.time() - start
print(f'-- That took {d2:.2f} seconds.\n')

start = time.time()
print(without_compile())
d3 = time.time() - start
print(f'-- That took {d3:.2f} seconds.\n')

print(f'Ratio: {d3/d1:.2f}')

我在笔记本电脑上获得的示例输出(Python 3.7.7):

With re.compile:
compiling
searching
676000
-- That took 0.33 seconds.

Without re.compile, cache-friendly order:
searching
676000
-- That took 0.67 seconds.

Without re.compile:
searching
676000
-- That took 23.54 seconds.

Ratio: 70.89

I didn't bother with timeit as the difference is so stark, but I get qualitatively similar numbers each time. Note that even without re.compile, using the same regex multiple times and moving on to the next one wasn't so bad (only about 2 times as slow as with re.compile), but in the other order (looping through many regexes), it is significantly worse, as expected. Also, increasing the cache size works too: simply setting re._MAXCACHE = len(patterns) in setup() above (of course I don't recommend doing such things in production as names with underscores are conventionally “private”) drops the ~23 seconds back down to ~0.7 seconds, which also matches our understanding.

我有很多运行编译过的regex 1000的经验 与实时编译相比,并没有注意到 任何可感知的差异

对已接受答案的投票导致假设@Triptych所说的对所有情况都是正确的。这并不一定是真的。一个很大的区别是当你必须决定是接受一个正则表达式字符串还是一个编译过的正则表达式对象作为函数的参数时:

>>> timeit.timeit(setup="""
... import re
... f=lambda x, y: x.match(y)       # accepts compiled regex as parameter
... h=re.compile('hello')
... """, stmt="f(h, 'hello world')")
0.32881879806518555
>>> timeit.timeit(setup="""
... import re
... f=lambda x, y: re.compile(x).match(y)   # compiles when called
... """, stmt="f('hello', 'hello world')")
0.809190034866333

编译正则表达式总是更好的,以防需要重用它们。

请注意,上面timeit中的示例模拟在导入时一次创建已编译的regex对象,而不是在需要匹配时“动态”创建。

我自己刚试过。对于从字符串中解析数字并对其求和的简单情况,使用编译后的正则表达式对象的速度大约是使用re方法的两倍。

正如其他人指出的那样,re方法(包括re.compile)在以前编译的表达式缓存中查找正则表达式字符串。因此,在正常情况下,使用re方法的额外成本只是缓存查找的成本。

然而,检查代码,缓存被限制为100个表达式。这就引出了一个问题,缓存溢出有多痛苦?该代码包含正则表达式编译器的内部接口re.sre_compile.compile。如果我们调用它,就绕过了缓存。结果表明,对于一个基本的正则表达式,例如r'\w+\s+([0-9_]+)\s+\w*',它要慢两个数量级。

下面是我的测试:

#!/usr/bin/env python
import re
import time

def timed(func):
    def wrapper(*args):
        t = time.time()
        result = func(*args)
        t = time.time() - t
        print '%s took %.3f seconds.' % (func.func_name, t)
        return result
    return wrapper

regularExpression = r'\w+\s+([0-9_]+)\s+\w*'
testString = "average    2 never"

@timed
def noncompiled():
    a = 0
    for x in xrange(1000000):
        m = re.match(regularExpression, testString)
        a += int(m.group(1))
    return a

@timed
def compiled():
    a = 0
    rgx = re.compile(regularExpression)
    for x in xrange(1000000):
        m = rgx.match(testString)
        a += int(m.group(1))
    return a

@timed
def reallyCompiled():
    a = 0
    rgx = re.sre_compile.compile(regularExpression)
    for x in xrange(1000000):
        m = rgx.match(testString)
        a += int(m.group(1))
    return a


@timed
def compiledInLoop():
    a = 0
    for x in xrange(1000000):
        rgx = re.compile(regularExpression)
        m = rgx.match(testString)
        a += int(m.group(1))
    return a

@timed
def reallyCompiledInLoop():
    a = 0
    for x in xrange(10000):
        rgx = re.sre_compile.compile(regularExpression)
        m = rgx.match(testString)
        a += int(m.group(1))
    return a

r1 = noncompiled()
r2 = compiled()
r3 = reallyCompiled()
r4 = compiledInLoop()
r5 = reallyCompiledInLoop()
print "r1 = ", r1
print "r2 = ", r2
print "r3 = ", r3
print "r4 = ", r4
print "r5 = ", r5
</pre>
And here is the output on my machine:
<pre>
$ regexTest.py 
noncompiled took 4.555 seconds.
compiled took 2.323 seconds.
reallyCompiled took 2.325 seconds.
compiledInLoop took 4.620 seconds.
reallyCompiledInLoop took 4.074 seconds.
r1 =  2000000
r2 =  2000000
r3 =  2000000
r4 =  2000000
r5 =  20000

'reallyCompiled'方法使用内部接口,绕过缓存。注意,在每个循环迭代中编译的代码只迭代了10,000次,而不是一百万次。

根据Python文档:

序列

prog = re.compile(pattern)
result = prog.match(string)

等于

result = re.match(pattern, string)

但是,当表达式将在一个程序中多次使用时,使用re.compile()并保存生成的正则表达式对象以供重用会更有效。

所以我的结论是,如果你要为许多不同的文本匹配相同的模式,你最好预编译它。