我有一份可能有出口问题的商品清单。我想获得重复项目的列表,以便我可以手动比较它们。当我尝试使用熊猫复制方法时,它只返回第一个副本。有没有办法得到所有的副本,而不只是第一个?

我的数据集的一小部分是这样的:

ID,ENROLLMENT_DATE,TRAINER_MANAGING,TRAINER_OPERATOR,FIRST_VISIT_DATE
1536D,12-Feb-12,"06DA1B3-Lebanon NH",,15-Feb-12
F15D,18-May-12,"06405B2-Lebanon NH",,25-Jul-12
8096,8-Aug-12,"0643D38-Hanover NH","0643D38-Hanover NH",25-Jun-12
A036,1-Apr-12,"06CB8CF-Hanover NH","06CB8CF-Hanover NH",9-Aug-12
8944,19-Feb-12,"06D26AD-Hanover NH",,4-Feb-12
1004E,8-Jun-12,"06388B2-Lebanon NH",,24-Dec-11
11795,3-Jul-12,"0649597-White River VT","0649597-White River VT",30-Mar-12
30D7,11-Nov-12,"06D95A3-Hanover NH","06D95A3-Hanover NH",30-Nov-11
3AE2,21-Feb-12,"06405B2-Lebanon NH",,26-Oct-12
B0FE,17-Feb-12,"06D1B9D-Hartland VT",,16-Feb-12
127A1,11-Dec-11,"064456E-Hanover NH","064456E-Hanover NH",11-Nov-12
161FF,20-Feb-12,"0643D38-Hanover NH","0643D38-Hanover NH",3-Jul-12
A036,30-Nov-11,"063B208-Randolph VT","063B208-Randolph VT",
475B,25-Sep-12,"06D26AD-Hanover NH",,5-Nov-12
151A3,7-Mar-12,"06388B2-Lebanon NH",,16-Nov-12
CA62,3-Jan-12,,,
D31B,18-Dec-11,"06405B2-Lebanon NH",,9-Jan-12
20F5,8-Jul-12,"0669C50-Randolph VT",,3-Feb-12
8096,19-Dec-11,"0649597-White River VT","0649597-White River VT",9-Apr-12
14E48,1-Aug-12,"06D3206-Hanover NH",,
177F8,20-Aug-12,"063B208-Randolph VT","063B208-Randolph VT",5-May-12
553E,11-Oct-12,"06D95A3-Hanover NH","06D95A3-Hanover NH",8-Mar-12
12D5F,18-Jul-12,"0649597-White River VT","0649597-White River VT",2-Nov-12
C6DC,13-Apr-12,"06388B2-Lebanon NH",,
11795,27-Feb-12,"0643D38-Hanover NH","0643D38-Hanover NH",19-Jun-12
17B43,11-Aug-12,,,22-Oct-12
A036,11-Aug-12,"06D3206-Hanover NH",,19-Jun-12

我的代码现在是这样的:

df_bigdata_duplicates = df_bigdata[df_bigdata.duplicated(cols='ID')]

有两个重复的项目。但是,当我使用上面的代码时,我只得到第一项。在API引用中,我看到了如何获得最后一项,但我想拥有所有这些项,这样我就可以直观地检查它们,看看为什么我得到了差异。因此,在这个示例中,我希望获得所有三个A036条目和11795条目以及任何其他重复条目,而不仅仅是第一个条目。任何帮助都非常感激。


当前回答

df[df['ID'].duplicated() == True]

这对我很有效

其他回答

这可能不是问题的解决方案,但可以举例说明:

import pandas as pd

df = pd.DataFrame({
    'A': [1,1,3,4],
    'B': [2,2,5,6],
    'C': [3,4,7,6],
})

print(df)
df.duplicated(keep=False)
df.duplicated(['A','B'], keep=False)

输出:

   A  B  C
0  1  2  3
1  1  2  4
2  3  5  7
3  4  6  6

0    False
1    False
2    False
3    False
dtype: bool

0     True
1     True
2    False
3    False
dtype: bool

由于我无法评论,因此发表了一个单独的答案

若要在多个列的基础上查找重复项,请提及每个列名 如下所示,它将返回所有复制的行集:

df[df[['product_uid', 'product_title', 'user']].duplicated() == True]

另外,

df[df[['product_uid', 'product_title', 'user']].duplicated()]

受上述解决方案的启发,您可以进一步排序值,以便您可以查看重复排序的记录:

df[df.duplicated(['ID'], keep=False)].sort_values(by='ID')

你可以用:

df[df.duplicated(['ID'])==True].sort_values('ID')

复制的行及其所有列值的索引loc#

def dup_rows_index(df):
  dup = df[df.duplicated()]
  print('Duplicated index loc:',dup[dup == True ].index.tolist())
  return dup

对于我的数据库,.duplicate (keep=False)在列排序之前不起作用。

data.sort_values(by=['Order ID'], inplace=True)
df = data[data['Order ID'].duplicated(keep=False)]