在创建NumPy数组后,并将其保存为Django上下文变量,我在加载网页时收到以下错误:

array([   0,  239,  479,  717,  952, 1192, 1432, 1667], dtype=int64) is not JSON serializable

这是什么意思?


当前回答

下面是一个为我工作的实现,并删除了所有的nan(假设这些是简单的对象(list或dict)):

from numpy import isnan

def remove_nans(my_obj, val=None):
    if isinstance(my_obj, list):
        for i, item in enumerate(my_obj):
            if isinstance(item, list) or isinstance(item, dict):
                my_obj[i] = remove_nans(my_obj[i], val=val)

            else:
                try:
                    if isnan(item):
                        my_obj[i] = val
                except Exception:
                    pass

    elif isinstance(my_obj, dict):
        for key, item in my_obj.iteritems():
            if isinstance(item, list) or isinstance(item, dict):
                my_obj[key] = remove_nans(my_obj[key], val=val)

            else:
                try:
                    if isnan(item):
                        my_obj[key] = val
                except Exception:
                    pass

    return my_obj

其他回答

我有一个类似的问题,嵌套字典与一些numpy。ndarray在里面。

def jsonify(data):
    json_data = dict()
    for key, value in data.iteritems():
        if isinstance(value, list): # for lists
            value = [ jsonify(item) if isinstance(item, dict) else item for item in value ]
        if isinstance(value, dict): # for nested lists
            value = jsonify(value)
        if isinstance(key, int): # if key is integer: > to string
            key = str(key)
        if type(value).__module__=='numpy': # if value is numpy.*: > to python list
            value = value.tolist()
        json_data[key] = value
    return json_data

存储为JSON一个numpy。Ndarray或任何嵌套列表组合。

class NumpyEncoder(json.JSONEncoder):
    def default(self, obj):
        if isinstance(obj, np.ndarray):
            return obj.tolist()
        return json.JSONEncoder.default(self, obj)

a = np.array([[1, 2, 3], [4, 5, 6]])
print(a.shape)
json_dump = json.dumps({'a': a, 'aa': [2, (2, 3, 4), a], 'bb': [2]}, 
                       cls=NumpyEncoder)
print(json_dump)

将输出:

(2, 3)
{"a": [[1, 2, 3], [4, 5, 6]], "aa": [2, [2, 3, 4], [[1, 2, 3], [4, 5, 6]]], "bb": [2]}

从JSON中恢复:

json_load = json.loads(json_dump)
a_restored = np.asarray(json_load["a"])
print(a_restored)
print(a_restored.shape)

将输出:

[[1 2 3]
 [4 5 6]]
(2, 3)

如果其他人的代码(例如模块)正在执行json.dumps(),其他答案将不起作用。这种情况经常发生,例如,web服务器自动将其返回响应转换为JSON,这意味着我们不能总是更改JSON .dump()的参数。 这个答案解决了这个问题,并且基于一个(相对)新的解决方案,适用于任何第三方类(不仅仅是numpy)。

TLDR

PIP安装json_fix

import json_fix # import this anytime before the JSON.dumps gets called
import json

# create a converter
import numpy
json.fallback_table[numpy.ndarray] = lambda array: array.tolist()

# no additional arguments needed: 
json.dumps(
   dict(thing=10, nested_data=numpy.array((1,2,3)))
)
#>>> '{"thing": 10, "nested_data": [1, 2, 3]}'

我经常“jsonify”np.arrays。首先尝试在数组上使用".tolist()"方法,如下所示:

import numpy as np
import codecs, json 

a = np.arange(10).reshape(2,5) # a 2 by 5 array
b = a.tolist() # nested lists with same data, indices
file_path = "/path.json" ## your path variable
json.dump(b, codecs.open(file_path, 'w', encoding='utf-8'), 
          separators=(',', ':'), 
          sort_keys=True, 
          indent=4) ### this saves the array in .json format

为了“unjsonify”数组使用:

obj_text = codecs.open(file_path, 'r', encoding='utf-8').read()
b_new = json.loads(obj_text)
a_new = np.array(b_new)

如果你在字典中嵌套了numpy数组,我发现了最好的解决方案:

import json
import numpy as np

class NumpyEncoder(json.JSONEncoder):
    """ Special json encoder for numpy types """
    def default(self, obj):
        if isinstance(obj, np.integer):
            return int(obj)
        elif isinstance(obj, np.floating):
            return float(obj)
        elif isinstance(obj, np.ndarray):
            return obj.tolist()
        return json.JSONEncoder.default(self, obj)

dumped = json.dumps(data, cls=NumpyEncoder)

with open(path, 'w') as f:
    json.dump(dumped, f)

多亏了这个家伙。