我有一个熊猫DataFrame填充大部分实数,但有一些nan值在它以及。
我怎么能把这些nan替换成它们所在列的平均值呢?
这个问题与下面这个问题非常相似:numpy array:用列的平均值替换nan值,但不幸的是,这里给出的解决方案不适用于pandas DataFrame。
我有一个熊猫DataFrame填充大部分实数,但有一些nan值在它以及。
我怎么能把这些nan替换成它们所在列的平均值呢?
这个问题与下面这个问题非常相似:numpy array:用列的平均值替换nan值,但不幸的是,这里给出的解决方案不适用于pandas DataFrame。
当前回答
直接使用df.fillna(df.mean())将所有空值填充为mean
如果你想用该列的平均值填充空值,那么你可以使用这个
假设x=df['Item_Weight']这里Item_Weight是列名
这里我们赋值(用x的均值填充x的空值)
df['Item_Weight'] = df['Item_Weight'].fillna((df['Item_Weight'].mean()))
如果你想用一些字符串填充空值,那么使用
这里Outlet_size是列名
df.Outlet_Size = df.Outlet_Size.fillna('Missing')
其他回答
# To read data from csv file
Dataset = pd.read_csv('Data.csv')
X = Dataset.iloc[:, :-1].values
# To calculate mean use imputer class
from sklearn.impute import SimpleImputer
imputer = SimpleImputer(missing_values=np.nan, strategy='mean')
imputer = imputer.fit(X[:, 1:3])
X[:, 1:3] = imputer.transform(X[:, 1:3])
直接使用df.fillna(df.mean())将所有空值填充为mean
如果你想用该列的平均值填充空值,那么你可以使用这个
假设x=df['Item_Weight']这里Item_Weight是列名
这里我们赋值(用x的均值填充x的空值)
df['Item_Weight'] = df['Item_Weight'].fillna((df['Item_Weight'].mean()))
如果你想用一些字符串填充空值,那么使用
这里Outlet_size是列名
df.Outlet_Size = df.Outlet_Size.fillna('Missing')
使用sklearn库预处理类
from sklearn.impute import SimpleImputer
missingvalues = SimpleImputer(missing_values = np.nan, strategy = 'mean', axis = 0)
missingvalues = missingvalues.fit(x[:,1:3])
x[:,1:3] = missingvalues.transform(x[:,1:3])
注意:在最近的版本中,missing_values参数值更改为np。nan源自nan
虽然,下面的代码可以完成工作,但它的性能会受到很大的影响,因为你处理一个#记录100k或更多的DataFrame:
df.fillna(df.mean())
根据我的经验,应该只在需要的地方替换NaN值(无论是Mean还是Median),而不是在整个DataFrame上应用fillna()。
我有一个包含20个变量的DataFrame,其中只有4个需要NaN值处理(替换)。我尝试了上面的代码(代码1),以及它的一个稍微修改的版本(代码2),其中我有选择地运行它。仅适用于具有NaN值的变量
#------------------------------------------------
#----(Code 1) Treatment on overall DataFrame-----
df.fillna(df.mean())
#------------------------------------------------
#----(Code 2) Selective Treatment----------------
for i in df.columns[df.isnull().any(axis=0)]: #---Applying Only on variables with NaN values
df[i].fillna(df[i].mean(),inplace=True)
#---df.isnull().any(axis=0) gives True/False flag (Boolean value series),
#---which when applied on df.columns[], helps identify variables with NaN values
下面是我观察到的性能,因为我一直在增加DataFrame中的#记录
DataFrame与~100k记录
代码1:22.06秒 代码2:0.03秒
DataFrame有~200k条记录
代码1:180.06秒 代码2:0.06秒
DataFrame有大约160万条记录
代码1:代码不停地运行 代码2:0.40秒
DataFrame有大约1300万条记录
代码1:——甚至没有尝试,在看到1.6 Mn记录的性能之后—— 代码2:3.20秒
很抱歉回答这么长!希望这能有所帮助!
我使用这个方法来填充一个列的平均值。
fill_mean = lambda col : col.fillna(col.mean())
df = df.apply(fill_mean, axis = 0)