是否有一种方法可以在交互或脚本执行模式下扩大输出的显示?
具体来说,我在Pandas DataFrame上使用了describe()函数。当DataFrame是五列(标签)宽时,我得到了我想要的描述性统计数据。然而,如果DataFrame有更多的列,统计数据将被抑制,并返回如下内容:
>> Index: 8 entries, count to max
>> Data columns:
>> x1 8 non-null values
>> x2 8 non-null values
>> x3 8 non-null values
>> x4 8 non-null values
>> x5 8 non-null values
>> x6 8 non-null values
>> x7 8 non-null values
无论有6列还是7列,都给出“8”值。“8”指什么?
我已经尝试过将IDLE窗口拖大,以及增加“配置IDLE”宽度选项,但无济于事。
您可以使用这个自定义函数为Pandas数据框架显示内容。
def display_all(df): # For any Dataframe df
with pd.option_context('display.max_rows',1000): # Change number of rows accordingly
with pd.option_context('display.max_columns',1000): # Change number of columns accordingly
display(df)
display_all(df.head()) #传递这个函数到你的数据帧和voilà!
你不需要用pd。Set_option用于整个笔记本,只用于单个单元格。
import pandas as pd
pd.set_option('display.max_columns', 100)
pd.set_option('display.width', 1000)
SentenceA = "William likes Piano and Piano likes William"
SentenceB = "Sara likes Guitar"
SentenceC = "Mamoosh likes Piano"
SentenceD = "William is a CS Student"
SentenceE = "Sara is kind"
SentenceF = "Mamoosh is kind"
bowA = SentenceA.split(" ")
bowB = SentenceB.split(" ")
bowC = SentenceC.split(" ")
bowD = SentenceD.split(" ")
bowE = SentenceE.split(" ")
bowF = SentenceF.split(" ")
# Creating a set consisting of all words
wordSet = set(bowA).union(set(bowB)).union(set(bowC)).union(set(bowD)).union(set(bowE)).union(set(bowF))
print("Set of all words is: ", wordSet)
# Initiating dictionary with 0 value for all BOWs
wordDictA = dict.fromkeys(wordSet, 0)
wordDictB = dict.fromkeys(wordSet, 0)
wordDictC = dict.fromkeys(wordSet, 0)
wordDictD = dict.fromkeys(wordSet, 0)
wordDictE = dict.fromkeys(wordSet, 0)
wordDictF = dict.fromkeys(wordSet, 0)
for word in bowA:
wordDictA[word] += 1
for word in bowB:
wordDictB[word] += 1
for word in bowC:
wordDictC[word] += 1
for word in bowD:
wordDictD[word] += 1
for word in bowE:
wordDictE[word] += 1
for word in bowF:
wordDictF[word] += 1
# Printing term frequency
print("SentenceA TF: ", wordDictA)
print("SentenceB TF: ", wordDictB)
print("SentenceC TF: ", wordDictC)
print("SentenceD TF: ", wordDictD)
print("SentenceE TF: ", wordDictE)
print("SentenceF TF: ", wordDictF)
print(pd.DataFrame([wordDictA, wordDictB, wordDictB, wordDictC, wordDictD, wordDictE, wordDictF]))
输出:
CS Guitar Mamoosh Piano Sara Student William a and is kind likes
0 0 0 0 2 0 0 2 0 1 0 0 2
1 0 1 0 0 1 0 0 0 0 0 0 1
2 0 1 0 0 1 0 0 0 0 0 0 1
3 0 0 1 1 0 0 0 0 0 0 0 1
4 1 0 0 0 0 1 1 1 0 1 0 0
5 0 0 0 0 1 0 0 0 0 1 1 0
6 0 0 1 0 0 0 0 0 0 1 1 0
你可以通过set_printoptions来调整Pandas打印选项。
In [3]: df.describe()
Out[3]:
<class 'pandas.core.frame.DataFrame'>
Index: 8 entries, count to max
Data columns:
x1 8 non-null values
x2 8 non-null values
x3 8 non-null values
x4 8 non-null values
x5 8 non-null values
x6 8 non-null values
x7 8 non-null values
dtypes: float64(7)
In [4]: pd.set_printoptions(precision=2)
In [5]: df.describe()
Out[5]:
x1 x2 x3 x4 x5 x6 x7
count 8.0 8.0 8.0 8.0 8.0 8.0 8.0
mean 69024.5 69025.5 69026.5 69027.5 69028.5 69029.5 69030.5
std 17.1 17.1 17.1 17.1 17.1 17.1 17.1
min 69000.0 69001.0 69002.0 69003.0 69004.0 69005.0 69006.0
25% 69012.2 69013.2 69014.2 69015.2 69016.2 69017.2 69018.2
50% 69024.5 69025.5 69026.5 69027.5 69028.5 69029.5 69030.5
75% 69036.8 69037.8 69038.8 69039.8 69040.8 69041.8 69042.8
max 69049.0 69050.0 69051.0 69052.0 69053.0 69054.0 69055.0
然而,这并不会在所有情况下工作,因为Pandas会检测你的控制台宽度,并且它只会在输出适合控制台时使用to_string(参见set_printoptions的文档字符串)。
在这种情况下,你可以显式调用由BrenBarn回答的to_string。
更新
在0.10版本中,数据帧的打印方式发生了变化:
In [3]: df.describe()
Out[3]:
x1 x2 x3 x4 x5 \
count 8.000000 8.000000 8.000000 8.000000 8.000000
mean 59832.361578 27356.711336 49317.281222 51214.837838 51254.839690
std 22600.723536 26867.192716 28071.737509 21012.422793 33831.515761
min 31906.695474 1648.359160 56.378115 16278.322271 43.745574
25% 45264.625201 12799.540572 41429.628749 40374.273582 29789.643875
50% 56340.214856 18666.456293 51995.661512 54894.562656 47667.684422
75% 75587.003417 31375.610322 61069.190523 67811.893435 76014.884048
max 98136.474782 84544.484627 91743.983895 75154.587156 99012.695717
x6 x7
count 8.000000 8.000000
mean 41863.000717 33950.235126
std 38709.468281 29075.745673
min 3590.990740 1833.464154
25% 15145.759625 6879.523949
50% 22139.243042 33706.029946
75% 72038.983496 51449.893980
max 98601.190488 83309.051963
此外,设置Pandas选项的API改变了:
In [4]: pd.set_option('display.precision', 2)
In [5]: df.describe()
Out[5]:
x1 x2 x3 x4 x5 x6 x7
count 8.0 8.0 8.0 8.0 8.0 8.0 8.0
mean 59832.4 27356.7 49317.3 51214.8 51254.8 41863.0 33950.2
std 22600.7 26867.2 28071.7 21012.4 33831.5 38709.5 29075.7
min 31906.7 1648.4 56.4 16278.3 43.7 3591.0 1833.5
25% 45264.6 12799.5 41429.6 40374.3 29789.6 15145.8 6879.5
50% 56340.2 18666.5 51995.7 54894.6 47667.7 22139.2 33706.0
75% 75587.0 31375.6 61069.2 67811.9 76014.9 72039.0 51449.9
max 98136.5 84544.5 91744.0 75154.6 99012.7 98601.2 83309.1