如果我有一个numpy dtype,我如何自动将其转换为最接近的python数据类型?例如,

numpy.float32 -> "python float"
numpy.float64 -> "python float"
numpy.uint32  -> "python int"
numpy.int16   -> "python int"

我可以尝试提出所有这些情况的映射,但是numpy是否提供了一些自动的方法来将其dtypes转换为尽可能接近的本机python类型?这种映射不需要是详尽的,但它应该转换具有类似python的常见dtype。我想这已经在numpy的某个地方发生了。


当前回答

你也可以调用你想转换的对象的item()方法:

>>> from numpy import float32, uint32
>>> type(float32(0).item())
<type 'float'>
>>> type(uint32(0).item())
<type 'long'>

其他回答

我发现自己混合使用了numpy类型和标准python。因为所有numpy类型都派生自numpy。泛型,下面是如何将所有内容转换为python标准类型:

if isinstance(obj, numpy.generic):
    return numpy.asscalar(obj)

你也可以调用你想转换的对象的item()方法:

>>> from numpy import float32, uint32
>>> type(float32(0).item())
<type 'float'>
>>> type(uint32(0).item())
<type 'long'>

numpy将该信息保存在一个暴露为typeDict的映射中,因此您可以执行如下操作:

>>> import __builtin__ as builtins  # if python2
>>> import builtins                 # if python3

然后::

>>> import numpy as np
>>> {v: k for k, v in np.typeDict.items() if k in dir(builtins)}
{numpy.object_: 'object',
 numpy.bool_: 'bool',
 numpy.string_: 'str',
 numpy.unicode_: 'unicode',
 numpy.int64: 'int',
 numpy.float64: 'float',
 numpy.complex128: 'complex'}

如果你想要实际的python类型,而不是它们的名称,你可以执行::

>>> {v: getattr(builtins, k) for k, v in np.typeDict.items() if k in vars(builtins)}
{numpy.object_: object,
 numpy.bool_: bool,
 numpy.string_: str,
 numpy.unicode_: unicode,
 numpy.int64: int,
 numpy.float64: float,
 numpy.complex128: complex}

对不起,这部分来晚了,但我正在寻找一个转换numpy的问题。float64只适用于常规Python浮点数。我看到了3种方法:

npValue.item () npValue.astype(浮动) 浮动(npValue)

以下是IPython的相关计时:

In [1]: import numpy as np

In [2]: aa = np.random.uniform(0, 1, 1000000)

In [3]: %timeit map(float, aa)
10 loops, best of 3: 117 ms per loop

In [4]: %timeit map(lambda x: x.astype(float), aa)
1 loop, best of 3: 780 ms per loop

In [5]: %timeit map(lambda x: x.item(), aa)
1 loop, best of 3: 475 ms per loop

听起来float(npValue)似乎更快。

翻译整个ndarray而不是一个单位数据对象:

def trans(data):
"""
translate numpy.int/float into python native data type
"""
result = []
for i in data.index:
    # i = data.index[0]
    d0 = data.iloc[i].values
    d = []
    for j in d0:
        if 'int' in str(type(j)):
            res = j.item() if 'item' in dir(j) else j
        elif 'float' in str(type(j)):
            res = j.item() if 'item' in dir(j) else j
        else:
            res = j
        d.append(res)
    d = tuple(d)
    result.append(d)
result = tuple(result)
return result

但是,当处理大型数据帧时,需要花费一些时间。我也在寻找一个更有效的解决方案。 希望有更好的答案。