如果我有一个numpy dtype,我如何自动将其转换为最接近的python数据类型?例如,
numpy.float32 -> "python float"
numpy.float64 -> "python float"
numpy.uint32 -> "python int"
numpy.int16 -> "python int"
我可以尝试提出所有这些情况的映射,但是numpy是否提供了一些自动的方法来将其dtypes转换为尽可能接近的本机python类型?这种映射不需要是详尽的,但它应该转换具有类似python的常见dtype。我想这已经在numpy的某个地方发生了。
我认为你可以像这样写一般类型的转换函数:
import numpy as np
def get_type_convert(np_type):
convert_type = type(np.zeros(1,np_type).tolist()[0])
return (np_type, convert_type)
print get_type_convert(np.float32)
>> (<type 'numpy.float32'>, <type 'float'>)
print get_type_convert(np.float64)
>> (<type 'numpy.float64'>, <type 'float'>)
这意味着没有固定的列表,您的代码将扩展到更多类型。
如何:
In [51]: dict([(d, type(np.zeros(1,d).tolist()[0])) for d in (np.float32,np.float64,np.uint32, np.int16)])
Out[51]:
{<type 'numpy.int16'>: <type 'int'>,
<type 'numpy.uint32'>: <type 'long'>,
<type 'numpy.float32'>: <type 'float'>,
<type 'numpy.float64'>: <type 'float'>}
我的方法有点强硬,但似乎适用于所有情况:
def type_np2py(dtype=None, arr=None):
'''Return the closest python type for a given numpy dtype'''
if ((dtype is None and arr is None) or
(dtype is not None and arr is not None)):
raise ValueError(
"Provide either keyword argument `dtype` or `arr`: a numpy dtype or a numpy array.")
if dtype is None:
dtype = arr.dtype
#1) Make a single-entry numpy array of the same dtype
#2) force the array into a python 'object' dtype
#3) the array entry should now be the closest python type
single_entry = np.empty([1], dtype=dtype).astype(object)
return type(single_entry[0])
用法:
>>> type_np2py(int)
<class 'int'>
>>> type_np2py(np.int)
<class 'int'>
>>> type_np2py(str)
<class 'str'>
>>> type_np2py(arr=np.array(['hello']))
<class 'str'>
>>> type_np2py(arr=np.array([1,2,3]))
<class 'int'>
>>> type_np2py(arr=np.array([1.,2.,3.]))
<class 'float'>
numpy将该信息保存在一个暴露为typeDict的映射中,因此您可以执行如下操作:
>>> import __builtin__ as builtins # if python2
>>> import builtins # if python3
然后::
>>> import numpy as np
>>> {v: k for k, v in np.typeDict.items() if k in dir(builtins)}
{numpy.object_: 'object',
numpy.bool_: 'bool',
numpy.string_: 'str',
numpy.unicode_: 'unicode',
numpy.int64: 'int',
numpy.float64: 'float',
numpy.complex128: 'complex'}
如果你想要实际的python类型,而不是它们的名称,你可以执行::
>>> {v: getattr(builtins, k) for k, v in np.typeDict.items() if k in vars(builtins)}
{numpy.object_: object,
numpy.bool_: bool,
numpy.string_: str,
numpy.unicode_: unicode,
numpy.int64: int,
numpy.float64: float,
numpy.complex128: complex}
使用val.item()将大多数NumPy值转换为原生Python类型:
import numpy as np
# for example, numpy.float32 -> python float
val = np.float32(0)
pyval = val.item()
print(type(pyval)) # <class 'float'>
# and similar...
type(np.float64(0).item()) # <class 'float'>
type(np.uint32(0).item()) # <class 'int'>
type(np.int16(0).item()) # <class 'int'>
type(np.cfloat(0).item()) # <class 'complex'>
type(np.datetime64(0, 'D').item()) # <class 'datetime.date'>
type(np.datetime64('2001-01-01 00:00:00').item()) # <class 'datetime.datetime'>
type(np.timedelta64(0, 'D').item()) # <class 'datetime.timedelta'>
...
(另一个方法是np.asscalar(val),但自NumPy 1.16以来已弃用)。
对于好奇的人来说,为您的系统构建一个NumPy数组标量转换表:
for name in dir(np):
obj = getattr(np, name)
if hasattr(obj, 'dtype'):
try:
if 'time' in name:
npn = obj(0, 'D')
else:
npn = obj(0)
nat = npn.item()
print('{0} ({1!r}) -> {2}'.format(name, npn.dtype.char, type(nat)))
except:
pass
在一些系统中,有一些NumPy类型在Python中没有对应的原生类型,包括:clongdouble, clongfloat, complex192, complex256, float128, longcomplex, longdouble和longfloat。在使用.item()之前,需要将它们转换为最接近的NumPy等效值。