如果我有一个numpy dtype,我如何自动将其转换为最接近的python数据类型?例如,

numpy.float32 -> "python float"
numpy.float64 -> "python float"
numpy.uint32  -> "python int"
numpy.int16   -> "python int"

我可以尝试提出所有这些情况的映射,但是numpy是否提供了一些自动的方法来将其dtypes转换为尽可能接近的本机python类型?这种映射不需要是详尽的,但它应该转换具有类似python的常见dtype。我想这已经在numpy的某个地方发生了。


当前回答

如果你有一个numpy类型的数组list_numpy_numbers,执行以下操作:

list_native_numbers = [i.item() for i in list_numpy_numbers]

其他回答

我发现自己混合使用了numpy类型和标准python。因为所有numpy类型都派生自numpy。泛型,下面是如何将所有内容转换为python标准类型:

if isinstance(obj, numpy.generic):
    return numpy.asscalar(obj)

使用val.item()将大多数NumPy值转换为原生Python类型:

import numpy as np

# for example, numpy.float32 -> python float
val = np.float32(0)
pyval = val.item()
print(type(pyval))         # <class 'float'>

# and similar...
type(np.float64(0).item()) # <class 'float'>
type(np.uint32(0).item())  # <class 'int'>
type(np.int16(0).item())   # <class 'int'>
type(np.cfloat(0).item())  # <class 'complex'>
type(np.datetime64(0, 'D').item())  # <class 'datetime.date'>
type(np.datetime64('2001-01-01 00:00:00').item())  # <class 'datetime.datetime'>
type(np.timedelta64(0, 'D').item()) # <class 'datetime.timedelta'>
...

(另一个方法是np.asscalar(val),但自NumPy 1.16以来已弃用)。


对于好奇的人来说,为您的系统构建一个NumPy数组标量转换表:

for name in dir(np):
    obj = getattr(np, name)
    if hasattr(obj, 'dtype'):
        try:
            if 'time' in name:
                npn = obj(0, 'D')
            else:
                npn = obj(0)
            nat = npn.item()
            print('{0} ({1!r}) -> {2}'.format(name, npn.dtype.char, type(nat)))
        except:
            pass

在一些系统中,有一些NumPy类型在Python中没有对应的原生类型,包括:clongdouble, clongfloat, complex192, complex256, float128, longcomplex, longdouble和longfloat。在使用.item()之前,需要将它们转换为最接近的NumPy等效值。

如果你有一个numpy类型的数组list_numpy_numbers,执行以下操作:

list_native_numbers = [i.item() for i in list_numpy_numbers]

Tolist()是一种更通用的实现方法。它适用于任何基元dtype,也适用于数组或矩阵。

如果从基本类型调用I,实际上不会产生一个列表:

numpy = 1.15.2

>>> import numpy as np

>>> np_float = np.float64(1.23)
>>> print(type(np_float), np_float)
<class 'numpy.float64'> 1.23

>>> listed_np_float = np_float.tolist()
>>> print(type(listed_np_float), listed_np_float)
<class 'float'> 1.23

>>> np_array = np.array([[1,2,3.], [4,5,6.]])
>>> print(type(np_array), np_array)
<class 'numpy.ndarray'> [[1. 2. 3.]
 [4. 5. 6.]]

>>> listed_np_array = np_array.tolist()
>>> print(type(listed_np_array), listed_np_array)
<class 'list'> [[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]]

numpy将该信息保存在一个暴露为typeDict的映射中,因此您可以执行如下操作:

>>> import __builtin__ as builtins  # if python2
>>> import builtins                 # if python3

然后::

>>> import numpy as np
>>> {v: k for k, v in np.typeDict.items() if k in dir(builtins)}
{numpy.object_: 'object',
 numpy.bool_: 'bool',
 numpy.string_: 'str',
 numpy.unicode_: 'unicode',
 numpy.int64: 'int',
 numpy.float64: 'float',
 numpy.complex128: 'complex'}

如果你想要实际的python类型,而不是它们的名称,你可以执行::

>>> {v: getattr(builtins, k) for k, v in np.typeDict.items() if k in vars(builtins)}
{numpy.object_: object,
 numpy.bool_: bool,
 numpy.string_: str,
 numpy.unicode_: unicode,
 numpy.int64: int,
 numpy.float64: float,
 numpy.complex128: complex}