np.random.seed做什么?
np.random.seed(0)
np.random.seed做什么?
np.random.seed(0)
当前回答
我希望给出一个非常简短的答案:
种子使(下一个系列)随机数可预测。你可以认为每次调用seed之后,它都预先定义了序列号numpy random保留了它的迭代器,然后每次你得到一个随机数它就会调用get next。
例如:
np.random.seed(2)
np.random.randn(2) # array([-0.41675785, -0.05626683])
np.random.randn(1) # array([-1.24528809])
np.random.seed(2)
np.random.randn(1) # array([-0.41675785])
np.random.randn(2) # array([-0.05626683, -1.24528809])
您可以注意到,当我设置相同的种子时,无论每次从numpy请求多少个随机数,它总是给出相同的数字序列,在本例中是数组([-0.41675785,-0.05626683,-1.24528809])。
其他回答
上面的所有答案都展示了np.random.seed()在代码中的实现。我会尽量简单地解释为什么会发生这种情况。计算机是基于预先定义的算法设计的机器。计算机的任何输出都是对输入执行算法的结果。所以当我们要求计算机生成随机数时,当然它们是随机的,但计算机并不是随机产生的!
因此,当我们编写np.random.seed(any_number_here)时,算法将输出一个特定的数字集,该数字集对参数any_number_here是唯一的。这就好像我们传递正确的参数就能得到一组特定的随机数。但这需要我们知道算法是如何工作的,这很乏味。
因此,例如,如果我写np.random.seed(10),我得到的特定数字集将保持不变,即使我在10年后执行同一行,除非算法改变。
numpy.random.seed(0)
numpy.random.randint(10, size=5)
这将产生以下输出: 数组([5,0,3,3,7]) 同样,如果我们运行相同的代码,我们将得到相同的结果。
现在,如果我们将种子值0改为1或其他:
numpy.random.seed(1)
numpy.random.randint(10, size=5)
这将产生以下输出:array([5 8 9 5 0]),但现在的输出与上面不同。
我希望给出一个非常简短的答案:
种子使(下一个系列)随机数可预测。你可以认为每次调用seed之后,它都预先定义了序列号numpy random保留了它的迭代器,然后每次你得到一个随机数它就会调用get next。
例如:
np.random.seed(2)
np.random.randn(2) # array([-0.41675785, -0.05626683])
np.random.randn(1) # array([-1.24528809])
np.random.seed(2)
np.random.randn(1) # array([-0.41675785])
np.random.randn(2) # array([-0.05626683, -1.24528809])
您可以注意到,当我设置相同的种子时,无论每次从numpy请求多少个随机数,它总是给出相同的数字序列,在本例中是数组([-0.41675785,-0.05626683,-1.24528809])。
Numpy文档中有一个很好的解释: https://docs.scipy.org/doc/numpy-1.15.1/reference/generated/numpy.random.RandomState.html 它指的是梅森扭扭伪随机数发生器。关于算法的更多细节,请访问:https://en.wikipedia.org/wiki/Mersenne_Twister
想象一下,您正在向某人展示如何用一堆“随机”数字编写代码。通过使用numpy种子,它们可以使用相同的种子号并获得相同的“随机”数字集。
所以它不是完全随机的,因为算法会吐出数字但它看起来像是随机生成的一堆。